|
|
A327596
|
|
Number of colored compositions of 2n using all colors of an n-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors in (weakly) increasing order.
|
|
2
|
|
|
1, 1, 27, 1222, 78819, 7990555, 1075539168, 185948116920, 39826324710186, 10231314625984628, 3097070454570888110, 1088018981038197792790, 436918864329884469153204, 198400793333371519398942287, 100941775818744369615731919906, 57064609834208008799145534143376
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..100
|
|
FORMULA
|
a(n) = A327244(2n,n).
|
|
MAPLE
|
C:= binomial:
b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k, p+j)/j!*C(C(k+i-1, i), j), j=0..n/i)))
end:
a:= n-> add(b(2*n$2, i, 0)*(-1)^(n-i)*C(n, i), i=0..n):
seq(a(n), n=0..17);
|
|
MATHEMATICA
|
c = Binomial;
b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[
b[n-i*j, Min[n-i*j, i-1], k, p+j]/j!*c[c[k+i-1, i], j], {j, 0, n/i}]]];
a[n_] := Sum[b[2n, 2n, i, 0]*(-1)^(n-i)*c[n, i], {i, 0, n}];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 11 2022, after Alois P. Heinz *)
|
|
CROSSREFS
|
Cf. A327244.
Sequence in context: A223552 A357228 A104206 * A163568 A066300 A273518
Adjacent sequences: A327593 A327594 A327595 * A327597 A327598 A327599
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Sep 18 2019
|
|
STATUS
|
approved
|
|
|
|