|
|
A028377
|
|
Expansion of Product_{m>0} (1+q^m)^(m(m+1)/2).
|
|
34
|
|
|
1, 1, 3, 9, 19, 46, 100, 218, 460, 965, 1975, 3993, 7975, 15712, 30650, 59150, 113093, 214300, 402812, 751165, 1390714, 2557004, 4670770, 8479232, 15302657, 27462424, 49021252, 87057783, 153850769, 270614429, 473850031, 826125184, 1434286323, 2480145226
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Convolved with aerated A000294: [1, 0, 2, 0, 4, 0, 10, 0, 26, ...] = A000294. - Gary W. Adamson, Jun 13 2009
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(n+1)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ 7^(1/8) * exp(2 * 7^(1/4) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) + 3^(3/2) * 5^(1/2) * Zeta(3) * n^(1/2) / (2 * 7^(1/2) * Pi^2) - 3^(13/4) * 5^(5/4) * Zeta(3)^2 * n^(1/4) / (4 * 7^(5/4) * Pi^5) + 2025 * Zeta(3)^3 / (98*Pi^8)) / (2^(49/24) * 15^(1/8) * n^(5/8)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 11 2015
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(d+1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^3)). - Ilya Gutkovskiy, May 28 2018
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(i*(i+1)/2, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
|
|
MATHEMATICA
|
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[i*(i+1)/2, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|