

A028374


Numbers that have only curved digits {0, 3, 6, 8, 9} or digits that are both curved and linear {2, 5}.


11



0, 2, 3, 5, 6, 8, 9, 20, 22, 23, 25, 26, 28, 29, 30, 32, 33, 35, 36, 38, 39, 50, 52, 53, 55, 56, 58, 59, 60, 62, 63, 65, 66, 68, 69, 80, 82, 83, 85, 86, 88, 89, 90, 92, 93, 95, 96, 98, 99, 200, 202, 203, 205, 206, 208, 209, 220, 222, 223, 225, 226, 228, 229, 230, 232, 233
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Previous name was: "Curved numbers: numbers that have only curved digits (0, 2, 3, 5, 6, 8, 9)"; but in fact, the curved numbers form the sequence A072960.
This sequence allows all digits except for 1, 4 and 7. (End)


LINKS



EXAMPLE

206 is in the sequence because it has only curved digits 2, 0 and 6.
208 is in the sequence because it has only curved digits 2, 0 and 8.
2035689 is the smallest number having all the curved digits.
(End)


MAPLE

N:= 3: S:= {0, 2, 3, 5, 6, 8, 9}: K:= S:
for j from 2 to N do
K:= map(t > seq(10*t+s, s=S), K);
od:


MATHEMATICA

f[n_] := Block[{id = IntegerDigits[n], curve = {0, 2, 3, 5, 6, 8, 9}}, If[ Union[ Join[id, curve]] == curve, True, False]]; Select[ Range[0, 240], f[ # ] & ]
Select[Range[0, 249], Union[DigitCount[#] * {1, 0, 0, 1, 0, 0, 1, 0, 0, 0}] == {0} &] (* Alonso del Arte, May 23 2014 *)
Select[Range[0, 500], Intersection[IntegerDigits[#], {1, 4, 7}]=={}&] (* K. D. Bajpai, Sep 07 2014 *)


PROG

(Python)
for n in range(10**3):
s = str(n)
if not (s.count('1') + s.count('4') + s.count('7')):
(Magma) [n: n in [0..300]  Set(Intseq(n)) subset [0, 2, 3, 5, 6, 8, 9] ]; // Vincenzo Librandi, Sep 19 2014


CROSSREFS

Cf. A028373 (straight digits: 1, 4, 7), A072960 (curved digits: 0, 3, 6, 8, 9), A072961 (both straight and curved digits: 2, 5).
Combinations: A082741 (digits: 1, 2, 4, 5, 7), A361780 (digits: 0, 1, 3, 4, 6, 7, 8, 9).
Cf. A034470 (subsequence of primes).


KEYWORD

base,easy,nonn


AUTHOR

Greg Heil (gheil(AT)scn.org), Dec 11 1999


EXTENSIONS



STATUS

approved



