login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028374 Numbers that have only curved digits {0, 3, 6, 8, 9} or digits that are both curved and linear {2, 5}. 11
0, 2, 3, 5, 6, 8, 9, 20, 22, 23, 25, 26, 28, 29, 30, 32, 33, 35, 36, 38, 39, 50, 52, 53, 55, 56, 58, 59, 60, 62, 63, 65, 66, 68, 69, 80, 82, 83, 85, 86, 88, 89, 90, 92, 93, 95, 96, 98, 99, 200, 202, 203, 205, 206, 208, 209, 220, 222, 223, 225, 226, 228, 229, 230, 232, 233 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
From Bernard Schott, Mar 26 2023: (Start)
Previous name was: "Curved numbers: numbers that have only curved digits (0, 2, 3, 5, 6, 8, 9)"; but in fact, the curved numbers form the sequence A072960.
This sequence allows all digits except for 1, 4 and 7. (End)
LINKS
EXAMPLE
From K. D. Bajpai, Sep 07 2014: (Start)
206 is in the sequence because it has only curved digits 2, 0 and 6.
208 is in the sequence because it has only curved digits 2, 0 and 8.
2035689 is the smallest number having all the curved digits.
(End)
MAPLE
N:= 3: S:= {0, 2, 3, 5, 6, 8, 9}: K:= S:
for j from 2 to N do
K:= map(t -> seq(10*t+s, s=S), K);
od:
print( K); # K. D. Bajpai, Sep 07 2014
MATHEMATICA
f[n_] := Block[{id = IntegerDigits[n], curve = {0, 2, 3, 5, 6, 8, 9}}, If[ Union[ Join[id, curve]] == curve, True, False]]; Select[ Range[0, 240], f[ # ] & ]
Select[Range[0, 249], Union[DigitCount[#] * {1, 0, 0, 1, 0, 0, 1, 0, 0, 0}] == {0} &] (* Alonso del Arte, May 23 2014 *)
Select[Range[0, 500], Intersection[IntegerDigits[#], {1, 4, 7}]=={}&] (* K. D. Bajpai, Sep 07 2014 *)
PROG
(Python)
for n in range(10**3):
s = str(n)
if not (s.count('1') + s.count('4') + s.count('7')):
print(n, end=', ') # Derek Orr, Sep 19 2014
(Magma) [n: n in [0..300] | Set(Intseq(n)) subset [0, 2, 3, 5, 6, 8, 9] ]; // Vincenzo Librandi, Sep 19 2014
CROSSREFS
Cf. A028373 (straight digits: 1, 4, 7), A072960 (curved digits: 0, 3, 6, 8, 9), A072961 (both straight and curved digits: 2, 5).
Combinations: A082741 (digits: 1, 2, 4, 5, 7), A361780 (digits: 0, 1, 3, 4, 6, 7, 8, 9).
Cf. A034470 (subsequence of primes).
Sequence in context: A335658 A364807 A294941 * A050578 A283513 A028776
KEYWORD
base,easy,nonn
AUTHOR
Greg Heil (gheil(AT)scn.org), Dec 11 1999
EXTENSIONS
Corrected and extended by Rick L. Shepherd, May 21 2003
Offset corrected by Arkadiusz Wesolowski, Aug 15 2011
Definition clarified by Bernard Schott, Mar 25 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 06:39 EDT 2024. Contains 373629 sequences. (Running on oeis4.)