The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028375 Squares of (odd numbers not divisible by 5). 2
1, 9, 49, 81, 121, 169, 289, 361, 441, 529, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3249, 3481, 3721, 3969, 4489, 4761, 5041, 5329, 5929, 6241, 6561, 6889, 7569, 7921, 8281, 8649, 9409, 9801, 10201, 10609, 11449, 11881, 12321 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Catalan stated empirically that the triple of any odd square not divisible by 5 is a sum of squares of three primes other than 2 and 3. - Jonathan Vos Post, Mar 03 2010 [Reference?]
LINKS
Rodolfo Ruiz-Huidobro, Table of n, a(n) for n = 1..250
FORMULA
a(n) = (A045572(n))^2.
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9). - R. J. Mathar, Sep 22 2009
G.f.: x*(1 + 8*x + 40*x^2 + 32*x^3 + 38*x^4 + 32*x^5 + 40*x^6 + 8*x^7 + x^8)/((1 + x)^2 * (x^2 + 1)^2 * (1 - x)^3). - R. J. Mathar, Sep 22 2009
Sum_{n>=1} 1/a(n) = 3*Pi^2/25. - Amiram Eldar, Dec 19 2020
MATHEMATICA
Select[Range[1, 191, 2], Mod[#, 5] != 0 &]^2 (* or *) LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 9, 49, 81, 121, 169, 289, 361, 441}, 50] (* Harvey P. Dale, Feb 26 2017 *)
Complement[2Range[100] - 1, 5Range[20]]^2 (* Alonso del Arte, Dec 23 2019 *)
PROG
(Scala) ((1 to 99 by 2).diff(5 to 100 by 5)).map(n => (n * n)) // Alonso del Arte, Dec 23 2019
CROSSREFS
Sequence in context: A340239 A032589 A137175 * A167744 A032598 A352141
KEYWORD
nonn,easy
AUTHOR
ems (nibor(AT)ix.netcom.com)
EXTENSIONS
Definition corrected by R. J. Mathar, Sep 22 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 03:59 EDT 2024. Contains 372807 sequences. (Running on oeis4.)