login
A366646
G.f. A(x) satisfies A(x) = 1 + (x * A(x) / (1 - x))^4.
2
1, 0, 0, 0, 1, 4, 10, 20, 39, 88, 228, 600, 1507, 3652, 8866, 22100, 56365, 144656, 369784, 942480, 2408934, 6196280, 16026652, 41571640, 107959654, 280708560, 731349400, 1910098320, 4999759830, 13109582376, 34421585844, 90500370760, 238272324682
OFFSET
0,6
FORMULA
a(n) = Sum_{k=0..floor(n/4)} binomial(n-1,n-4*k) * binomial(4*k,k) / (3*k+1).
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(n-1, n-4*k)*binomial(4*k, k)/(3*k+1));
CROSSREFS
Partial sums give A127902.
Sequence in context: A128640 A128641 A164617 * A038421 A049032 A100354
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 15 2023
STATUS
approved