The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213336 G.f. satisfies: A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. 4
 1, 1, 8, 64, 568, 5440, 54888, 574848, 6190872, 68132224, 762874568, 8663106496, 99536424952, 1155012037824, 13516570396968, 159340702404352, 1890451582396632, 22555522916988672, 270466907608087944, 3257754635421506368, 39397587357527547320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 FORMULA G.f. satisfies: A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4 is the g.f. of A213335. G.f. A(x) satisfies: A(1 - G(-x)) = G(x) = 1 + x*G(x)^4 is the g.f. of A002293. EXAMPLE G.f.: A(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +... G.f.: A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is g.f. of A002293: G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +... PROG (PARI) /* G.f. A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4: */ {a(n)=local(A, G=1+x); for(i=1, n, G=1+x*G^4+x*O(x^n)); A=subst(G, x, x/(1-x+x*O(x^n))^4); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* G.f. A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4: */ {a(n)=local(F=1+x+x*O(x^n), A=1); for(i=1, n+1, F=1+x/subst(F^4, x, -x+x*O(x^n))); A=(serreverse(x/F^4)/x)^(1/4); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A213335, A002293; variants: A006319, A213282. Sequence in context: A344054 A344252 A199567 * A047900 A204212 A238724 Adjacent sequences:  A213333 A213334 A213335 * A213337 A213338 A213339 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 01:32 EDT 2021. Contains 346456 sequences. (Running on oeis4.)