The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011906 If b(n) is A011900(n) and c(n) is A001109(n), then a(n) = b(n)*c(n) = b(n) + (b(n)+1) + (b(n)+2) + ... + c(n). 2
1, 18, 525, 17340, 586177, 19896030, 675781821, 22956120408, 779829016225, 26491211221770, 899921240562957, 30570830315362260, 1038508305678375841, 35278711540581704598, 1198437683944896688125, 40711602541832856049200, 1382996048733983114022337 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
Mario Velucchi "From the desk of ... Mario Velucchi" in 'Mathematics and Informatics quarterly' volume 7 - 2/1997, p. 81.
LINKS
FORMULA
From R. J. Mathar, Apr 15 2010: (Start)
G.f.: x*(-1+23*x-33*x^2+3*x^3)/((x-1)*(x^2-34*x+1)*(1-6*x+x^2)).
a(n) = 41*a(n-1) -246*a(n-2) +246*a(n-3) -41*a(n-4) +a(n-5). (End)
Lim_{n -> infinity} a(n)/a(n-1) = A156164. - César Aguilera, Jul 17 2020
EXAMPLE
a(3) = 525 = 15*35 = 15 + 16 + ... + 35.
MAPLE
A011900 := proc(n) coeftayl( (1-4*x+x^2)/((1-x)*(1-6*x+x^2)), x=0, n) ; end proc: A001109 := proc(n) coeftayl( x/(1-6*x+x^2), x=0, n) ; end proc: A011906 := proc(n) A001109(n)*A011900(n-1) ; end proc: seq(A011906(n), n=1..30) ; # R. J. Mathar, Apr 15 2010
MATHEMATICA
LinearRecurrence[{41, -246, 246, -41, 1}, {1, 18, 525, 17340, 586177}, 20] (* Paul Cleary, Dec 05 2015 *)
CoefficientList[Series[(-1 + 23*x - 33*x^2 + 3*x^3)/((x - 1)*(x^2 - 34*x + 1)*(1 - 6*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 16 2017 *)
CROSSREFS
Sequence in context: A180791 A126276 A035277 * A255859 A334179 A183498
KEYWORD
nonn,easy
AUTHOR
Mario Velucchi (mathchess(AT)velucchi.it)
EXTENSIONS
More terms from R. J. Mathar, Apr 15 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 07:16 EDT 2024. Contains 373393 sequences. (Running on oeis4.)