login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096979
Sum of the areas of the first n+1 Pell triangles.
4
0, 1, 6, 36, 210, 1225, 7140, 41616, 242556, 1413721, 8239770, 48024900, 279909630, 1631432881, 9508687656, 55420693056, 323015470680, 1882672131025, 10973017315470, 63955431761796, 372759573255306, 2172602007770041
OFFSET
0,3
COMMENTS
Convolution of A059841(n) and A001109(n+1).
Partial sums of A084158.
LINKS
S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
FORMULA
G.f.: x/((1-x)*(1+x)*(1-6*x+x^2)).
a(n) = 6*a(n-1)-6*a(n-3)+a(n-4).
a(n) = (3-2*sqrt(2))^n*(3/32-sqrt(2)/16)+(3+2*sqrt(2))^n*(sqrt(2)/16+3/32)-(-1)^n/16-1/8.
a(n) = sum{k=0..n, (sqrt(2)*(sqrt(2)+1)^(2*k)/8-sqrt(2)*(sqrt(2)-1)^(2*k)/8)*((1+(-1)^(n-k))/2.
a(n) = sum{k=0..n, A001029(k)*A001029(k+1)/2}.
a(n) = (A001333(n+1)^2 - 1)/8 = ((A000129(n) + A000129(n+1))^2 - 1)/8. - Richard R. Forberg, Aug 25 2013
a(n) = A002620(A000129(n+1)) = A000217(A048739(n-1)), n > 0. - Ivan N. Ianakiev, Jun 21 2014
MATHEMATICA
Accumulate[LinearRecurrence[{5, 5, -1}, {0, 1, 5}, 30]] (* Harvey P. Dale, Sep 07 2011 *)
LinearRecurrence[{6, 0, -6, 1}, {0, 1, 6, 36}, 22] (* Ray Chandler, Aug 03 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 17 2004
STATUS
approved