OFFSET
0,3
LINKS
S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
Index entries for linear recurrences with constant coefficients, signature (6,0,-6,1).
FORMULA
G.f.: x/((1-x)*(1+x)*(1-6*x+x^2)).
a(n) = 6*a(n-1)-6*a(n-3)+a(n-4).
a(n) = (3-2*sqrt(2))^n*(3/32-sqrt(2)/16)+(3+2*sqrt(2))^n*(sqrt(2)/16+3/32)-(-1)^n/16-1/8.
a(n) = sum{k=0..n, (sqrt(2)*(sqrt(2)+1)^(2*k)/8-sqrt(2)*(sqrt(2)-1)^(2*k)/8)*((1+(-1)^(n-k))/2.
a(n) = (A001333(n+1)^2 - 1)/8 = ((A000129(n) + A000129(n+1))^2 - 1)/8. - Richard R. Forberg, Aug 25 2013
MATHEMATICA
Accumulate[LinearRecurrence[{5, 5, -1}, {0, 1, 5}, 30]] (* Harvey P. Dale, Sep 07 2011 *)
LinearRecurrence[{6, 0, -6, 1}, {0, 1, 6, 36}, 22] (* Ray Chandler, Aug 03 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 17 2004
STATUS
approved