login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096978
Sum of the areas of the first n Jacobsthal rectangles.
2
0, 1, 4, 19, 74, 305, 1208, 4863, 19398, 77709, 310612, 1242907, 4970722, 19884713, 79535216, 318148151, 1272578046, 5090341317, 20361307020, 81445344595, 325781145370, 1303125047521, 5212499258024, 20849998896239, 83399991856694
OFFSET
0,3
FORMULA
G.f.: x/((1-x)^2*(1+2*x)*(1-4*x)).
a(n) = 8*4^n/27 - 2*(-2)^n/27 - (n+2)/9;
a(n) = Sum_{k=0..n} (2*4^k/3 + (-2)^k/3)*(n-k).
a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).
a(n) = Sum_{k=0..n} A001045(k)*A001045(k+1).
a(n-1) = Sum_{k=0..n} (-1)^(k+1)*A001045(k)*A001045(2*(n-k)). - Paul Barry, Aug 11 2009
MATHEMATICA
LinearRecurrence[{4, 3, -14, 8}, {0, 1, 4, 19}, 30] (* or *) Table[(2^(2n+1)-3n - 3+(-2)^n)/27, {n, 30}] (* Harvey P. Dale, Aug 08 2011 *)
PROG
(Magma) [8*4^n/27-2*(-2)^n/27-(n+2)/9: n in [0..30]]; // Vincenzo Librandi, May 31 2011
CROSSREFS
Sequence in context: A110688 A218920 A009450 * A186810 A167478 A094734
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 17 2004
STATUS
approved