|
|
A096981
|
|
Number of partitions of n into parts congruent to {0, 1, 3, 5} mod 6.
|
|
6
|
|
|
1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 12, 15, 21, 25, 30, 39, 46, 56, 72, 85, 101, 125, 147, 175, 215, 252, 296, 356, 415, 487, 582, 676, 786, 927, 1072, 1244, 1460, 1682, 1939, 2255, 2588, 2976, 3446, 3942, 4510, 5189, 5916, 6751, 7739, 8797, 9999, 11406, 12927, 14657
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Also, number of partitions of in which the distinct parts are prime to 3 and the unrestricted parts are multiples of 3.
The inverted graded parafermionic partition function. This g.f. is a generalization of A003105, A006950 and A096938
|
|
REFERENCES
|
T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
Noureddine Chair, The Euler-Riemann Gases, and Partition Identities, arXiv:1306.5415 [math-ph], (23-June-2013)
Donald Spector, Duality, partial supersymmetry and arithmetic number theory, arXiv:hep-th/9710002, 1997.
Donald Spector, Duality, partial supersymmetry and arithmetic number theory, J. Math. Phys. Vol. 39, 1998, p. 1919.
|
|
FORMULA
|
Expansion of q^(5/24) * eta(q^2) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012
Euler transform of period 6 sequence [1, 0, 1, 0, 1, 1, ...]. - Vladeta Jovovic, Aug 20 2004
G.f.: 1/product_{k>=1}(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)) = Product_{k>=1}(1+x^(3*k-1))(1+x^(3*k-2))/(1-x^(3*k)).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(6)*n). - Vaclav Kotesovec, Aug 31 2015
|
|
EXAMPLE
|
a(11) = 15 because we can write 11 = 10+1 = 8+2+1 = 7+4 = 5+4+2 (parts do not contain multiple of 3) = 9+2 = 8+3 = 7+3+1 = 6+5 = 6+4+1 = 6+3+2 = 5+3+3 = 5+3+2+1 = 4+3+3+1 = 3+3+3+2.
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + ...
q^-5 + q^19 + q^43 + 2*q^67 + 2*q^91 + 3*q^115 + 5*q^139 + 6*q^163 + 7*q^187 + ...
|
|
MAPLE
|
series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)), k=1..150), x=0, 100);
|
|
MATHEMATICA
|
CoefficientList[ Series[ Product[ 1/(1 - x^k + x^(2k) - x^(3k) + x^(4k) - x^(5k)), {k, 55}], {x, 0, 53}], x] (* Robert G. Wilson v, Aug 21 2004 *)
nmax = 100; CoefficientList[Series[x^3*QPochhammer[-1/x^2, x^3] * QPochhammer[-1/x, x^3]/((1 + x)*(1 + x^2) * QPochhammer[x^3, x^3]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
|
|
PROG
|
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */
(Haskell)
a096981 = p $ tail a047273_list where
p _ 0 = 1
p ks'@(k:ks) m = if k > m then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Feb 19 2013
|
|
CROSSREFS
|
Cf. A047273, A056970, A097451, A098884.
Sequence in context: A006065 A218933 A266746 * A281966 A276431 A308272
Adjacent sequences: A096978 A096979 A096980 * A096982 A096983 A096984
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Noureddine Chair, Aug 19 2004
|
|
EXTENSIONS
|
Better definition from Vladeta Jovovic, Aug 20 2004
More terms from Robert G. Wilson v, Aug 21 2004
Incorrect b-file replaced by Vaclav Kotesovec, Aug 31 2015
|
|
STATUS
|
approved
|
|
|
|