login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A096981
Number of partitions of n into parts congruent to {0, 1, 3, 5} mod 6.
6
1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 12, 15, 21, 25, 30, 39, 46, 56, 72, 85, 101, 125, 147, 175, 215, 252, 296, 356, 415, 487, 582, 676, 786, 927, 1072, 1244, 1460, 1682, 1939, 2255, 2588, 2976, 3446, 3942, 4510, 5189, 5916, 6751, 7739, 8797, 9999, 11406, 12927, 14657
OFFSET
0,4
COMMENTS
Also, number of partitions of n in which the distinct parts are prime to 3 and the unrestricted parts are multiples of 3.
The inverted graded parafermionic partition function. This g.f. is a generalization of A003105, A006950 and A096938
REFERENCES
T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976
LINKS
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
Noureddine Chair, The Euler-Riemann Gases, and Partition Identities, arXiv:1306.5415 [math-ph], 23-June-2013.
Donald Spector, Duality, partial supersymmetry and arithmetic number theory, arXiv:hep-th/9710002, 1997.
Donald Spector, Duality, partial supersymmetry and arithmetic number theory, J. Math. Phys. Vol. 39, 1998, p. 1919.
FORMULA
Expansion of q^(5/24) * eta(q^2) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012
Euler transform of period 6 sequence [1, 0, 1, 0, 1, 1, ...]. - Vladeta Jovovic, Aug 20 2004
G.f.: 1/product_{k>=1}(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)) = Product_{k>=1}(1+x^(3*k-1))(1+x^(3*k-2))/(1-x^(3*k)).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(6)*n). - Vaclav Kotesovec, Aug 31 2015
EXAMPLE
a(11) = 15 because we can write 11 = 10+1 = 8+2+1 = 7+4 = 5+4+2 (parts do not contain multiple of 3) = 9+2 = 8+3 = 7+3+1 = 6+5 = 6+4+1 = 6+3+2 = 5+3+3 = 5+3+2+1 = 4+3+3+1 = 3+3+3+2.
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + ...
q^-5 + q^19 + q^43 + 2*q^67 + 2*q^91 + 3*q^115 + 5*q^139 + 6*q^163 + 7*q^187 + ...
MAPLE
series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)), k=1..150), x=0, 100);
MATHEMATICA
CoefficientList[ Series[ Product[ 1/(1 - x^k + x^(2k) - x^(3k) + x^(4k) - x^(5k)), {k, 55}], {x, 0, 53}], x] (* Robert G. Wilson v, Aug 21 2004 *)
nmax = 100; CoefficientList[Series[x^3*QPochhammer[-1/x^2, x^3] * QPochhammer[-1/x, x^3]/((1 + x)*(1 + x^2) * QPochhammer[x^3, x^3]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */
(Haskell)
a096981 = p $ tail a047273_list where
p _ 0 = 1
p ks'@(k:ks) m = if k > m then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Feb 19 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Noureddine Chair, Aug 19 2004
EXTENSIONS
Better definition from Vladeta Jovovic, Aug 20 2004
More terms from Robert G. Wilson v, Aug 21 2004
Incorrect b-file replaced by Vaclav Kotesovec, Aug 31 2015
STATUS
approved