The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096981 Number of partitions of n into parts congruent to {0, 1, 3, 5} mod 6. 6
 1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 12, 15, 21, 25, 30, 39, 46, 56, 72, 85, 101, 125, 147, 175, 215, 252, 296, 356, 415, 487, 582, 676, 786, 927, 1072, 1244, 1460, 1682, 1939, 2255, 2588, 2976, 3446, 3942, 4510, 5189, 5916, 6751, 7739, 8797, 9999, 11406, 12927, 14657 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also, number of partitions of in which the distinct parts are prime to 3 and the unrestricted parts are multiples of 3. The inverted graded parafermionic partition function. This g.f. is a generalization of A003105, A006950 and A096938 REFERENCES T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004. Noureddine Chair, The Euler-Riemann Gases, and Partition Identities, arXiv:1306.5415 [math-ph], (23-June-2013) Donald Spector, Duality, partial supersymmetry and arithmetic number theory, arXiv:hep-th/9710002, 1997. Donald Spector, Duality, partial supersymmetry and arithmetic number theory, J. Math. Phys. Vol. 39, 1998, p. 1919. FORMULA Expansion of q^(5/24) * eta(q^2) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012 Euler transform of period 6 sequence [1, 0, 1, 0, 1, 1, ...]. - Vladeta Jovovic, Aug 20 2004 G.f.: 1/product_{k>=1}(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)) = Product_{k>=1}(1+x^(3*k-1))(1+x^(3*k-2))/(1-x^(3*k)). a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(6)*n). - Vaclav Kotesovec, Aug 31 2015 EXAMPLE a(11) = 15 because we can write 11 = 10+1 = 8+2+1 = 7+4 = 5+4+2 (parts do not contain multiple of 3) = 9+2 = 8+3 = 7+3+1 = 6+5 = 6+4+1 = 6+3+2 = 5+3+3 = 5+3+2+1 = 4+3+3+1 = 3+3+3+2. 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + ... q^-5 + q^19 + q^43 + 2*q^67 + 2*q^91 + 3*q^115 + 5*q^139 + 6*q^163 + 7*q^187 + ... MAPLE series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)), k=1..150), x=0, 100); MATHEMATICA CoefficientList[ Series[ Product[ 1/(1 - x^k + x^(2k) - x^(3k) + x^(4k) - x^(5k)), {k, 55}], {x, 0, 53}], x] (* Robert G. Wilson v, Aug 21 2004 *) nmax = 100; CoefficientList[Series[x^3*QPochhammer[-1/x^2, x^3] * QPochhammer[-1/x, x^3]/((1 + x)*(1 + x^2) * QPochhammer[x^3, x^3]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */ (Haskell) a096981 = p \$ tail a047273_list where p _ 0 = 1 p ks'@(k:ks) m = if k > m then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Feb 19 2013 CROSSREFS Cf. A047273, A056970, A097451, A098884. Sequence in context: A006065 A218933 A266746 * A281966 A276431 A308272 Adjacent sequences: A096978 A096979 A096980 * A096982 A096983 A096984 KEYWORD nonn AUTHOR Noureddine Chair, Aug 19 2004 EXTENSIONS Better definition from Vladeta Jovovic, Aug 20 2004 More terms from Robert G. Wilson v, Aug 21 2004 Incorrect b-file replaced by Vaclav Kotesovec, Aug 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 10:51 EDT 2023. Contains 363121 sequences. (Running on oeis4.)