login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308272
G.f. A(x) satisfies: A(x) = (1 + x) * A(x^2)*A(x^3)*A(x^5)* ... *A(x^prime(k))* ...
2
1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 13, 16, 22, 27, 33, 44, 53, 65, 84, 101, 124, 156, 187, 226, 280, 336, 403, 492, 587, 700, 850, 1008, 1195, 1435, 1693, 2004, 2390, 2808, 3303, 3910, 4584, 5372, 6328, 7387, 8619, 10106, 11757, 13675, 15961, 18508, 21464, 24948, 28845, 33345
OFFSET
0,4
COMMENTS
Weigh transform of A008480.
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^A008480(k).
MAPLE
g:= proc(n) option remember; (l-> add(i, i=l)!/
mul(i!, i=l))(map(i-> i[2], ifactors(n)[2]))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, May 17 2019
MATHEMATICA
terms = 53; A[_] = 1; Do[A[x_] = (1 + x) Product[A[x^Prime[k]], {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 17 2019
STATUS
approved