|
|
A276431
|
|
Number of partitions of n containing no parts that are powers of 2 with positive exponent.
|
|
8
|
|
|
1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 13, 16, 22, 27, 33, 43, 52, 64, 81, 98, 120, 148, 178, 215, 263, 315, 377, 455, 541, 644, 771, 912, 1078, 1279, 1506, 1772, 2089, 2447, 2864, 3356, 3916, 4563, 5320, 6180, 7171, 8324, 9633, 11136, 12874, 14845, 17102, 19696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
G.f.: g(x) = Product_{i>=1} (1-x^{h(i)})/(1-x^i), where h(i) = 2^i.
|
|
EXAMPLE
|
a(6) = 5, counting [1,1,1,1,1,1], [1,1,1,3], [1,5], [3,3], [6].
|
|
MAPLE
|
h:= proc(i) options operator, arrow: 2^i end proc: g := product((1-x^h(i))/(1-x^i), i = 1 .. 55): gser := series(g, x = 0, 55): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d>1 and
d=2^ilog2(d), 0, a(n-j)*d), d=divisors(j)), j=1..n)/n)
end:
|
|
MATHEMATICA
|
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d>1 && d == 2^Floor[Log[2, d]], 0, a[n-j]*d], {d, Divisors[j]}], {j, 1, n}]/n]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|