login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096977
a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).
3
0, 1, 2, 11, 36, 157, 598, 2447, 9672, 38913, 155194, 621683, 2484908, 9943269, 39765790, 159077719, 636281744, 2545185225, 10180624386, 40722730555, 162890456180, 651562756781, 2606249162982, 10425000380191, 41699994064216
OFFSET
0,3
COMMENTS
Original name was: A Jacobsthal summation.
The convolution of A024000 and A003683. Inverse binomial transform is A055275, with interpolated zeros.
FORMULA
G.f.: x*(1-2*x)/((1-x)^2*(1+2*x)*(1-4*x)).
a(n) = 4*4^n/27 - 4*(-2)^n/27 + n/9.
a(n) = Sum_{k=0..n} A001045(k)^2.
a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).
MATHEMATICA
LinearRecurrence[{4, 3, -14, 8}, {0, 1, 2, 11}, 30] (* Harvey P. Dale, Jul 01 2015 *)
PROG
(Magma) [4*4^n/27-4*(-2)^n/27+n/9: n in [0..30]]; // Vincenzo Librandi, Jul 01 2011
(PARI) a(n)=(4*4^n-4*(-2)^n+3*n)/27 \\ Charles R Greathouse IV, Jul 01 2011
CROSSREFS
Cf. A001654.
Sequence in context: A375500 A176916 A015519 * A353979 A084098 A263547
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 17 2004
STATUS
approved