login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084098
Expansion of e.g.f. exp(x)*tan(2*x)/2.
1
0, 1, 2, 11, 36, 341, 1702, 23071, 154056, 2691241, 22470602, 479886131, 4808343276, 121361260541, 1418683841902, 41316096677191, 551971861815696, 18218322689532241, 273815850521907602, 10100775754144668251
OFFSET
0,3
COMMENTS
Binomial transform of expansion of tan(2x)/2 (0,1,0,8,0,256,...).
LINKS
FORMULA
E.g.f.: exp(x)*tan(2*x)/2.
a(n) ~ n! * (exp(Pi/4)-(-1)^n*exp(-Pi/4)) * 4^n/Pi^(n+1). - Vaclav Kotesovec, Sep 29 2013
a(n) = i*((4i)^n*EulerE(n,-i/4)-1)/2. - Benedict W. J. Irwin, May 26 2016
a(n) = (i/2)*( -1 + (2*i)^n * Sum_{j=0..n} binomial(n,j)*(-1 - i/2)^j*EulerE(n-j) ). - G. C. Greubel, Oct 14 2022
MAPLE
seq(I*((4*I)^n*euler(n, -I/4)-1)/2, n=0..30); # Robert Israel, May 26 2016
MATHEMATICA
CoefficientList[Series[E^x*Tan[2*x]/2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
Table[I ((4 I)^n*EulerE[n, -I/4] - 1)/2, {n, 0, 20}] (* Benedict W. J. Irwin, May 26 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(x)*Tan(2*x)/2 ))); // G. C. Greubel, Oct 14 2022
(SageMath) [(i/2)*(-1 + (2*i)^n*sum(binomial(n, j)*(-1-i/2)^j*euler_number(n-j) for j in range(n+1))) for n in range(40)] # G. C. Greubel, Oct 14 2022
CROSSREFS
Cf. A009739.
Sequence in context: A015519 A096977 A353979 * A263547 A152819 A297406
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 11 2003
STATUS
approved