|
|
A084095
|
|
First super-diagonal of number array A084061.
|
|
7
|
|
|
1, 1, 5, 45, 553, 8525, 157481, 3383989, 82823777, 2272771305, 69070483549, 2301873355661, 83445967372681, 3268307044050997, 137510640882447041, 6184402325475261525, 296032663549928711041, 15025296455500536616337
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..300
|
|
FORMULA
|
a(n) = ((n - sqrt(n-1))^n + (n + sqrt(n-1))^n)/2.
|
|
MAPLE
|
seq( round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
|
|
MATHEMATICA
|
Table[Round[((n+Sqrt[n-1])^n + (n-Sqrt[n-1])^n)/2], {n, 0, 20}] (* G. C. Greubel, Jan 11 2020 *)
|
|
PROG
|
(PARI) vector(21, n, round(((n-1-sqrt(n-2))^(n-1) + (n-1+sqrt(n-2))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
(Magma) [Round(((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
(Sage) [round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
(GAP) List([0..20], n-> ((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2); # G. C. Greubel, Jan 11 2020
|
|
CROSSREFS
|
Cf. A084061, A084062, A084063, A084064, A084065, A084096.
Sequence in context: A189122 A062023 A169714 * A174495 A121414 A243678
Adjacent sequences: A084092 A084093 A084094 * A084096 A084097 A084098
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, May 11 2003
|
|
STATUS
|
approved
|
|
|
|