login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062023
a(n) = (n^(n+1) + n^(n-1))/2.
4
1, 5, 45, 544, 8125, 143856, 2941225, 68157440, 1764915561, 50500000000, 1582182900661, 53868106874880, 1980337235410885, 78180905165533184, 3298800640869140625, 148150413341979836416, 7055872821971695929745, 355210628457538186444800
OFFSET
1,2
COMMENTS
a(n) is the number of monotonic runs over all length n words on an alphabet of n letters. - Geoffrey Critzer, Jun 25 2013
LINKS
FORMULA
E.g.f.: (-1/2)*LambertW(-x)*(1 + 1/(1 + LambertW(-x))^3). - G. C. Greubel, May 04 2022
EXAMPLE
a(3) = {3^4 +3^2}/2 = 45.
MATHEMATICA
Table[(n^(n-1)+n^(n+1))/2, {n, 1, 20}] (* Geoffrey Critzer, Jun 25 2013 *)
PROG
(PARI) a(n) = { (n^(n+1) + n^(n-1))/2 } \\ Harry J. Smith, Jul 29 2009
(SageMath) [(n^(n+1) + n^(n-1))/2 for n in (1..20)] # G. C. Greubel, May 04 2022
CROSSREFS
Cf. A229078.
Sequence in context: A275576 A365564 A189122 * A169714 A378575 A084095
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved