|
|
A169714
|
|
The function W_5(2n) (see Borwein et al. reference for definition).
|
|
7
|
|
|
1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, 15855173825, 322466645545, 6687295253325, 140927922498025, 3010302779775725, 65046639827565525, 1419565970145097545, 31249959913055650125, 693192670456484513025
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Row sums of the fourth power of A008459. - Peter Bala, Mar 05 2013
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
J. M. Borwein, A short walk can be beautiful, 2015.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals (2012)
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From N. J. A. Sloane, Dec 16 2012
|
|
FORMULA
|
Sum_{n>=0} a(n)*x^n/n!^2 = (Sum_{n>=0} x^n/n!^2)^5 = BesselI(0, 2*sqrt(x))^5. - Peter Bala, Mar 05 2013
D-finite with recurrence: n^4*a(n) = (35*n^4 - 70*n^3 + 63*n^2 - 28*n + 5)*a(n-1) - (n-1)^2*(259*n^2 - 518*n + 285)*a(n-2) + 225*(n-2)^2*(n-1)^2*a(n-3). - Vaclav Kotesovec, Mar 09 2014
a(n) ~ 5^(2*n+5/2) / (16 * Pi^2 * n^2). - Vaclav Kotesovec, Mar 09 2014
|
|
MAPLE
|
A169714 := proc(n)
W(5, 2*n) ;
end proc: # with W() from A169715, R. J. Mathar, Mar 27 2012
|
|
MATHEMATICA
|
a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^5, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2013, after Peter Bala *)
max = 17; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 4] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
|
|
CROSSREFS
|
Cf. A002893, A002895, A169715.
Sequence in context: A275576 A189122 A062023 * A084095 A174495 A121414
Adjacent sequences: A169711 A169712 A169713 * A169715 A169716 A169717
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Apr 17 2010
|
|
STATUS
|
approved
|
|
|
|