login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062021
a(n) = Sum_{i=1..n} Sum_{j=1..i} (prime(i)^2 - prime(j)^2).
3
0, 5, 42, 151, 548, 1185, 2542, 4403, 7608, 13621, 20834, 32535, 47980, 65609, 88278, 119947, 162368, 208869, 269194, 340007, 416580, 512305, 622286, 756003, 925432, 1114661, 1314498, 1537015, 1771628, 2031993, 2393158, 2786315
OFFSET
1,2
LINKS
FORMULA
a(n) = 2*a(n-1) - a(n-2) + (n-1)*(prime(n)^2 - prime(n-1)^2) with a(1) = 0, a(2) = 5.
EXAMPLE
a(3) = (5^2 - 2^2) + (5^2 - 3^2) + (3^2 - 2^2) = 42.
MAPLE
N:= 100: # for a(1)..a(N)
P2:= [seq(ithprime(i)^2, i=1..N)]:
DP2:= P2[2..-1]-P2[1..-2]:
A[1]:= 0: A[2]:= 5:
for n from 3 to N do A[n]:= 2*A[n-1]+(n-1)*DP2[n-1]-A[n-2] od:
seq(A[i], i=1..N); # Robert Israel, Feb 02 2020
MATHEMATICA
RecurrenceTable[{a[1]==0, a[2]==5, a[n]==2a[n-1]-a[n-2]+(n-1)(Prime[n]^2 - Prime[n-1]^2)}, a, {n, 40}] (* Harvey P. Dale, May 16 2019 *)
PROG
(Magma) [(&+[(&+[NthPrime(i)^2 - NthPrime(j)^2: j in [1..i]]): i in [1..n]]): n in [1..40]]; // G. C. Greubel, May 04 2022
(SageMath)
@CachedFunction
def a(n):
if (n<3): return 5*(n-1)
else: return 2*a(n-1) - a(n-2) + (n-1)*(nth_prime(n)^2 - nth_prime(n-1)^2)
[a(n) for n in (1..40)] # G. C. Greubel, May 04 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms and formula from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Name edited by G. C. Greubel, May 04 2022
STATUS
approved