OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 2*a(n-1) - a(n-2) + (n-1)*(prime(n)^2 - prime(n-1)^2) with a(1) = 0, a(2) = 5.
EXAMPLE
a(3) = (5^2 - 2^2) + (5^2 - 3^2) + (3^2 - 2^2) = 42.
MAPLE
N:= 100: # for a(1)..a(N)
P2:= [seq(ithprime(i)^2, i=1..N)]:
DP2:= P2[2..-1]-P2[1..-2]:
A[1]:= 0: A[2]:= 5:
for n from 3 to N do A[n]:= 2*A[n-1]+(n-1)*DP2[n-1]-A[n-2] od:
seq(A[i], i=1..N); # Robert Israel, Feb 02 2020
MATHEMATICA
RecurrenceTable[{a[1]==0, a[2]==5, a[n]==2a[n-1]-a[n-2]+(n-1)(Prime[n]^2 - Prime[n-1]^2)}, a, {n, 40}] (* Harvey P. Dale, May 16 2019 *)
PROG
(Magma) [(&+[(&+[NthPrime(i)^2 - NthPrime(j)^2: j in [1..i]]): i in [1..n]]): n in [1..40]]; // G. C. Greubel, May 04 2022
(SageMath)
@CachedFunction
def a(n):
if (n<3): return 5*(n-1)
else: return 2*a(n-1) - a(n-2) + (n-1)*(nth_prime(n)^2 - nth_prime(n-1)^2)
[a(n) for n in (1..40)] # G. C. Greubel, May 04 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms and formula from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Name edited by G. C. Greubel, May 04 2022
STATUS
approved