login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062024
a(n) = ((n+1)^n + (n-1)^n)/2.
10
1, 1, 5, 36, 353, 4400, 66637, 1188544, 24405761, 567108864, 14712104501, 421504185344, 13218256749601, 450353989316608, 16565151205544957, 654244800082329600, 27614800115689879553, 1240529732459024678912, 59095217374989483261925, 2975557672677668838178816
OFFSET
0,3
COMMENTS
Let b(n) = A302583(n) = ((n+1)^n - (n-1)^n)/2 = 0, 1, 4, 28, 272, ... then lim_{n -> infinity} b(n)/a(n) = tanh(1) = 0.76159415... . - Thomas Ordowski, Dec 06 2012
Obviously, a(n) is always odd number for even n. - Altug Alkan, Sep 28 2015
LINKS
FORMULA
a(n) = n! * [x^n] exp(n*x)*cosh(x). - Ilya Gutkovskiy, Apr 10 2018
EXAMPLE
a(3) = (4^3 + 2^3)/2 = 36.
MAPLE
A062024:=n->((n+1)^n + (n-1)^n)/2; seq(A062024(n), n=0..20); # Wesley Ivan Hurt, Nov 13 2013
MATHEMATICA
a[n_]:=((n-1)^n+(n+1)^n)/2; a[Range[0, 20]] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010; modified by G. C. Greubel, Jan 03 2020 *)
Table[((n+1)^n + (n-1)^n)/2, {n, 0, 20}] (* Vincenzo Librandi, Sep 28 2015 *)
PROG
(PARI) a(n) = { ((n + 1)^n + (n - 1)^n)/2 } \\ Harry J. Smith, Jul 29 2009
(Magma) [((n+1)^n + (n-1)^n)/2: n in [0..20]]; // Vincenzo Librandi, Sep 28 2015
(Sage) [((n+1)^n + (n-1)^n)/2 for n in (0..20)] # G. C. Greubel, Jan 03 2020
(GAP) List([0..20], n-> ((n+1)^n + (n-1)^n)/2); # G. C. Greubel, Jan 03 2020
CROSSREFS
Cf. A302583.
Sequence in context: A375616 A355494 A081918 * A031971 A247496 A302584
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org) and Jason Earls, Jun 06 2001
Offset changed from 1 to 0 by Harry J. Smith, Jul 29 2009
a(18)-a(19) from Vincenzo Librandi, Sep 28 2015
STATUS
approved