login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247496
a(n) = n!*[x^n](exp(n*x)*BesselI_{1}(2*x)/x), n>=0, main diagonal of A247495.
7
1, 1, 5, 36, 354, 4425, 67181, 1200745, 24699662, 574795035, 14930563042, 428235433978, 13442267711940, 458373150076335, 16872717817840509, 666835739823870900, 28163028244810505622, 1265837029802096365275, 60330098878933736719190, 3039079334694016053006276
OFFSET
0,3
COMMENTS
Also coefficient of x^n in the expansion of 1/(n+1) * (1 + n*x + x^2)^(n+1). - Seiichi Manyama, May 06 2019
LINKS
FORMULA
a(n) = Sum_{j=0..floor(n/2)} ((j+1)*n^(n-2*j)*n!)/((j+1)!^2*(n-2*j)!).
a(n) ~ BesselI(1,2) * n^n. - Vaclav Kotesovec, Dec 12 2014
From Ilya Gutkovskiy, Sep 21 2017: (Start)
a(n) = [x^n] (1 - n*x - sqrt(1 - 2*n*x + (n^2 - 4)*x^2))/(2*x^2).
a(n) = [x^n] 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. (End)
MATHEMATICA
Flatten[{1, Table[n^n*HypergeometricPFQ[{1/2-n/2, -n/2}, {2}, 4/n^2], {n, 1, 20}]}] (* Vaclav Kotesovec, Dec 12 2014 *)
PROG
(Sage)
a = lambda n: 1 if n==0 else n^n*hypergeometric([1/2-n/2, -n/2], [2], 4/n^2).simplify()
[a(n) for n in range(20)]
(PARI) {a(n) = sum(k=0, n\2, n^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))} \\ Seiichi Manyama, May 05 2019
(PARI) {a(n) = polcoef((1+n*x+x^2)^(n+1)/(n+1), n)} \\ Seiichi Manyama, May 06 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 12 2014
STATUS
approved