login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247498 Generalized Euler numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k] exp(n*x)*sech(x), n>=0, k>=0. 1
1, 0, 1, -1, 1, 1, 0, 0, 2, 1, 5, -2, 3, 3, 1, 0, 0, 2, 8, 4, 1, -61, 16, -3, 18, 15, 5, 1, 0, 0, 2, 32, 52, 24, 6, 1, 1385, -272, 63, 48, 165, 110, 35, 7, 1, 0, 0, 2, 128, 484, 480, 198, 48, 8, 1, -50521, 7936, -1383, 528, 1395, 2000, 1085, 322, 63, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
This two-dimensional array of numbers can be seen as a generalization of the Euler secant and Euler tangent numbers (which are in their compressed and signless form A000364 resp. A000182 or interleaved in A000111). The cases n=0 and n=1 reduce to their expanded and signed forms A122045 and A155585. Moreover the columns are the values of the Swiss-Knife polynomials A153641 evaluated at the nonnegative integers.
Subsequences [3,3,1], [8,4,1], [15,5,1], [24,6,1], [35,7,1], [48,8,1], [[63,9,1] found in rows of this entry, as a triangular array, are present in the antidiagonals of Table 5 of the East and Gray reference (A244490), and some subsequences in the rows of Table 5 are found in the antidiagonals of this entry, including [3,2,1] and [1,1]. Equivalently, the first four columns of Table 5 are embedded in this entry viewed as a square array on the table page. An explicit formula with combinatorial interpretations for these numbers is provided in the reference, and others are known for the corresponding columns for the modified Hermite polynomials of A244490. - Tom Copeland, Oct 04 2016
LINKS
J. East, R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
FORMULA
G.f. for column k: the k-th column consists of the values of the k-th Swiss-Knife polynomial skp_{k}(x) evaluated at x = 0,1,2,...
O.g.f. for column k: Sum_{j=0..k} (-1)^(k+1)*A247501(k,j)/(x-1)^(j+1).
EXAMPLE
Square array starts:
[n\k][0][1] [2] [3] [4] [5] [6] [7] [8]
[0] 1, 0, -1, 0, 5, 0, -61, 0, 1385, ... A122045
[1] 1, 1, 0, -2, 0, 16, 0, -272, 0, ... A155585
[2] 1, 2, 3, 2, -3, 2, 63, 2, -1383, ... A119880
[3] 1, 3, 8, 18, 32, 48, 128, 528, 512, ... A119881
[4] 1, 4, 15, 52, 165, 484, 1395, 4372, 14505, ...
[5] 1, 5, 24, 110, 480, 2000, 8064, 32240, 130560, ... A225116
[6] 1, 6, 35, 198, 1085, 5766, 29855, 151878, 766745, ...
.
Triangular array starts:
1,
0, 1,
-1, 1, 1,
0, 0, 2, 1,
5, -2, 3, 3, 1,
0, 0, 2, 8, 4, 1,
-61, 16, -3, 18, 15, 5, 1.
MAPLE
# EGF (row)
egf := n -> exp(n*x)*sech(x):
seq(print(seq(k!*coeff(series(egf(n), x, k+2), x, k), k=0..8)), n=0..6);
# Swiss-Knife polynomial (column)
SKP := proc(n, x) local v, k, A; A := k -> `if`(k mod 4 = 0, 0, (-1)^iquo(k, 4)); add(2^iquo(-k, 2)*A(k+1)*add((-1)^v* binomial(k, v)*(v+x+1)^n, v=0..k), k=0..n); expand(%) end:
seq(print(seq(SKP(k, n), n=0..9)), k=0..6);
# OGF (column)
col := proc(n, len) local T; T := A247501_row(n);
(-1)^(n+1)*add(T[k+1]/(x-1)^(k+1), k=0..n);
seq(coeff(series(%, x, len+1), x, j), j=0..len) end:
seq(print(col(n, 8)), n=0..6);
MATHEMATICA
nmax = 10; Clear[row]; row[n_] := row[n] = CoefficientList[Exp[n*x]*Sech[x] + O[x]^(nmax+2), x][[1 ;; nmax+1]]*Range[0, nmax]!;
rows = Table[row[n], {n, 0, nmax}];
T[n_, k_] := rows[[n+1, k+1]];
Table[T[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)
CROSSREFS
Cf. A244490.
Sequence in context: A090003 A136645 A366801 * A091381 A127156 A205106
KEYWORD
tabl,sign
AUTHOR
Peter Luschny, Dec 14 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 15:11 EDT 2024. Contains 371794 sequences. (Running on oeis4.)