OFFSET
0,5
COMMENTS
East and Gray (p. 24) give a combinatorial interpretation of the numbers: A function f: Y -> X with Y <= X (<= inclusion) has a 2-cycle if there exists x, y in Y with x != y, f(x) = y and f(y) = x. Then T(n,k) = card({f : [k] -> [n]: f has no 2-cycles}). For instance T(3,3) = 18 because there are 27 functions [3] -> [3], 9 of which have a 2-cycle. - Peter Luschny, Oct 05 2016
LINKS
J. East, R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
FORMULA
From Peter Luschny, Oct 05 2016: (Start)
T(n,k) = 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = 2^((k-1)/2)*n*KummerU((1-k)/2, 3/2, n^2/2) for n>=1.
T(n,k) = n^k*hypergeom([-k/2, (1-k)/2], [], -2/n^2) for n>=1. (End)
EXAMPLE
Triangle begins:
1
1 1
1 2 3
1 3 8 18
1 4 15 52 163
1 5 24 110 478 1950
1 6 35 198 1083 5706 28821
1 7 48 322 2110 13482 83824 505876
1 8 63 488 3715 27768 203569 1461944 10270569
1 9 80 702 6078 51894 436656 3618540 29510268 236644092
...
MAPLE
T := (n, k) -> add((-1)^i*binomial(k, 2*i)*doublefactorial(2*i-1)*n^(k-2*i), i=0..k/2):
seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Oct 05 2016
MATHEMATICA
Table[Simplify[2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Oct 05 2016 *)
PROG
(Sage)
def T(n, k):
@cached_function
def h(n, x):
if n == 0: return 1
if n == 1: return 2*x
return 2*(x*h(n-1, x)-(n-1)*h(n-2, x))
return h(k, n/sqrt(2))/2^(k/2)
for n in range(10):
print([T(n, k) for k in (0..n)]) # Peter Luschny, Oct 05 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 05 2014
STATUS
approved