login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244490
Triangle read by rows: T(n,k) (0 <= k <= n) = Sum_{i=0..[k/2]} (-1)^i*binomial(k,2*i)*(2*i-1)!!*n^(k-2*i).
3
1, 1, 1, 1, 2, 3, 1, 3, 8, 18, 1, 4, 15, 52, 163, 1, 5, 24, 110, 478, 1950, 1, 6, 35, 198, 1083, 5706, 28821, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555
OFFSET
0,5
COMMENTS
East and Gray (p. 24) give a combinatorial interpretation of the numbers: A function f: Y -> X with Y <= X (<= inclusion) has a 2-cycle if there exists x, y in Y with x != y, f(x) = y and f(y) = x. Then T(n,k) = card({f : [k] -> [n]: f has no 2-cycles}). For instance T(3,3) = 18 because there are 27 functions [3] -> [3], 9 of which have a 2-cycle. - Peter Luschny, Oct 05 2016
LINKS
J. East, R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
FORMULA
From Peter Luschny, Oct 05 2016: (Start)
T(n,k) = 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = 2^((k-1)/2)*n*KummerU((1-k)/2, 3/2, n^2/2) for n>=1.
T(n,k) = n^k*hypergeom([-k/2, (1-k)/2], [], -2/n^2) for n>=1. (End)
EXAMPLE
Triangle begins:
1
1 1
1 2 3
1 3 8 18
1 4 15 52 163
1 5 24 110 478 1950
1 6 35 198 1083 5706 28821
1 7 48 322 2110 13482 83824 505876
1 8 63 488 3715 27768 203569 1461944 10270569
1 9 80 702 6078 51894 436656 3618540 29510268 236644092
...
MAPLE
T := (n, k) -> add((-1)^i*binomial(k, 2*i)*doublefactorial(2*i-1)*n^(k-2*i), i=0..k/2):
seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Oct 05 2016
MATHEMATICA
Table[Simplify[2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Oct 05 2016 *)
PROG
(Sage)
def T(n, k):
@cached_function
def h(n, x):
if n == 0: return 1
if n == 1: return 2*x
return 2*(x*h(n-1, x)-(n-1)*h(n-2, x))
return h(k, n/sqrt(2))/2^(k/2)
for n in range(10):
print([T(n, k) for k in (0..n)]) # Peter Luschny, Oct 05 2016
CROSSREFS
As has been noticed by Tom Copeland: T(n,0) = A000012(n), T(n,1) = A001477(n) for n>=1, T(n,2) = A067998(n+1) for n>=3, T(n,3) = A121670(n) for n>=3.
Cf. A276999.
Sequence in context: A130477 A226513 A058127 * A133935 A139633 A208330
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 05 2014
STATUS
approved