login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276999
Triangle read by rows, T(n,k) = n^k - 2^(k/2)*KummerU(-k/2,1/2,n^2/2) for 0<=k<=n.
1
0, 0, 0, 0, 0, 1, 0, 0, 1, 9, 0, 0, 1, 12, 93, 0, 0, 1, 15, 147, 1175, 0, 0, 1, 18, 213, 2070, 17835, 0, 0, 1, 21, 291, 3325, 33825, 317667, 0, 0, 1, 24, 381, 5000, 58575, 635208, 6506647, 0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397
OFFSET
0,10
COMMENTS
East and Gray (p. 24) give a combinatorial interpretation of the numbers: A function f: Y -> X with Y <= X (<= inclusion) has a 2-cycle if there exists x, y in Y with x != y, f(x) = y and f(y) = x. Then T(n,k) = card({f: [k] -> [n]: f has 2-cycles}).
LINKS
J. East, R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
FORMULA
T(n,k) = n^k - 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = n^k - Sum_{i=0..k/2} k!/((-2)^i*i!*(k-2*i)!)*n^(k-2*i).
T(n,k) = n^k*(1-hypergeom([-k/2, (1-k)/2], [], -2/n^2)) for n>=1.
T(n,k) ~ n^k*(((k-1)*k)/(2*n^2)-(k*(k^3-6*k^2+11*k-6))/(8*n^4)+(k*(k^5-15*k^4 +85*k^3-225*k^2+274*k-120))/(48*n^6)+O((1/n)^7)).
EXAMPLE
Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 1, 9;
0, 0, 1, 12, 93;
0, 0, 1, 15, 147, 1175;
0, 0, 1, 18, 213, 2070, 17835;
0, 0, 1, 21, 291, 3325, 33825, 317667;
0, 0, 1, 24, 381, 5000, 58575, 635208, 6506647;
0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397;
.
For instance T(3,3) = 9 because there are 27 functions [3]->[3], 18 of which have
no 2-cycles. The 9 functions which have 2-cycles are (represented as [f(1), f(2),
f(3)]): [1, 3, 2], [2, 1, 1], [2, 1, 2], [2, 1, 3], [2, 3, 2], [3, 1, 1],
[3, 2, 1], [3, 3, 1], [3, 3, 2].
MAPLE
T := (n, k) -> n^k - 2^(k/2)*KummerU(-k/2, 1/2, n^2/2):
seq(seq(simplify(T(n, k)), k=0..n), n=0..9);
MATHEMATICA
Table[Simplify[n^k - 2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k, 0, n}] // Flatten
PROG
(Sage)
def T(n, k):
@cached_function
def h(n, x):
if n == 0: return 1
if n == 1: return 2*x
return 2*(x*h(n-1, x)-(n-1)*h(n-2, x))
return n^k - h(k, n/sqrt(2))/2^(k/2)
for n in range(10):
print([T(n, k) for k in (0..n)])
CROSSREFS
T(n,k) = n^k - A244490(n,k), T(n,3) = A008585(n) for n>=3, T(n,4) = A224334(n-1) for n>=4, T(n,5) = A127694(n-3) for n>=5.
Sequence in context: A353803 A275153 A019313 * A223082 A318374 A259107
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 06 2016
STATUS
approved