login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276996
Numerators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.
2
1, 0, 0, 1, -1, 1, 0, 1, -3, 1, 1, -1, 6, -10, 5, 0, -1, -15, 95, -40, 16, 239, -1, 13, -85, 240, -237, 79, 0, 403, 21, 385, -1575, 3577, -2947, 421, -46409, -239, 3841, 175, 861, -8036, 45458, -10692, 2673, 0, -82451, -2657, 56177, 1638, 19488, -85260, 139656, -86472, 19216
OFFSET
0,9
COMMENTS
The polynomials appear in certain asymptotic series for the Gamma function, cf. for example A181855/A181856 and A277000/A277001.
FORMULA
T(n,k) = Numerator([x^k] p_n(x)) where p_n(x) = Y_{n}(z_1, z_2, z_3,..., z_n) are the complete Bell polynomials evaluated at z_1 = 0 and z_k = (k-2)!*B_k(x) for k>1 and B_k(x) the Bernoulli polynomials.
EXAMPLE
Polynomials start:
p_0(x) = 1;
p_1(x) = 0;
p_2(x) = 1/6 + -x + x^2;
p_3(x) = (1/2)*x + -(3/2)*x^2 + x^3;
p_4(x) = 1/60 + -x + 6*x^2 + -10*x^3 + 5*x^4;
p_5(x) = -(1/6)*x + -(15/2)*x^2 + (95/3)*x^3 + -40*x^4 + 16*x^5;
p_6(x) = 239/504 + -(1/4)*x + (13/4)*x^2 + -85*x^3 + 240*x^4 + -237*x^5 + 79*x^6;
Triangle starts:
1;
0, 0;
1, -1, 1;
0, 1, -3, 1;
1, -1, 6, -10, 5;
0, -1, -15, 95, -40, 16;
239,-1, 13, -85, 240, -237, 79;
MAPLE
A276996_row := proc(n) local p;
p := (n, x) -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k, x), k=2..n)):
seq(numer(coeff(p(n, x), x, k)), k=0..n) end:
seq(A276996_row(n), n=0..9);
# Recurrence for the polynomials:
A276996_poly := proc(n, x) option remember; local z;
if n = 0 then return 1 fi; z := proc(k) option remember;
if k=1 then 0 else (k-2)!*bernoulli(k, x) fi end;
expand(add(binomial(n-1, j)*z(n-j)*A276996_poly(j, x), j=0..n-1)) end:
for n from 0 to 5 do sort(A276996_poly(n, x)) od;
MATHEMATICA
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
row[0] = {1}; row[1] = {0, 0}; row[n_] := CoefficientList[p[n, x], x] // Numerator;
Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
CROSSREFS
Cf. A276997 (denominators); T(2n,0) = A181855(n), T(n,n) = A203852(n).
Cf. A276998.
Sequence in context: A124372 A126470 A179701 * A102480 A157964 A140670
KEYWORD
sign,frac,tabl
AUTHOR
Peter Luschny, Oct 01 2016
STATUS
approved