login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181855
Numerator of Nemes numbers G_n.
4
1, 1, 1, 239, -46409, 9113897, -695818219549, 5649766313929, -1070083202835456443, 93856597276403726428217, -4815785492460413153189484781, 674781102986061046417681986493, -9845646538265462155478818981872958283
OFFSET
0,4
COMMENTS
G(n) = A181855(n)/A181856(n). Nemes numbers provide the coefficients for an asymptotic expansion for the Gamma function for real arguments greater than or equal to one.
Gamma(x) = sqrt(2*Pi/x)*((x/e)*(Sum_{k=0..n-1} G_k x^(-2k) + R_n(x)))^x.
LINKS
Gergő Nemes, New asymptotic expansion for the Gamma function, Arch. Math. 95 (2010), 161-169, Springer Basel.
FORMULA
G_0 = 1 and for n > 1 and B_n denoting the Bernoulli number,
G_n = Sum_{m=0..n} B_{2m+2} G_{n-m-1} / (2m+1),m=0..n-1)/(2n)).
a(n) = numerator(p(2*n)) with p(n) = Y_{n}(0, z_2, z_3, ..., z_n)/n! with z_k = (k-2)!*Bernoulli(k,1) and Y_{n} the complete Bell polynomials. - Peter Luschny, Oct 03 2016
EXAMPLE
G_0 = 1, G_1 = 1/12, G_2 = 1/1440, G_3 = 239/362880.
MAPLE
G := proc(n) option remember; local k; `if`(n=0, 1,
add(bernoulli(2*m+2)*G(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end;
a181855 := n -> numer(G(n));
# Alternatively:
p := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k, 1), k=2..n))/n!:
a := n -> numer(p(2*n)): seq(a(n), n=0..12); # Peter Luschny, Oct 03 2016
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[2m + 2]*a[n - m - 1]/(2m + 1), {m, 0, n}]/(2n); Table[a[n] // Numerator, {n, 0, 12}] (* Jean-François Alcover, Jul 26 2013 *)
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
p[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1], {k, 2, n}]]]/n!;
a[n_] := Numerator[p[2n]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 09 2018 *)
CROSSREFS
Cf. A000367, A002445, A181856 (denominators).
Sequence in context: A069364 A163052 A254298 * A223741 A223724 A223788
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Dec 02 2010
STATUS
approved