login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181858
a(n) = lcm(n^2, n!) / lcm(n^2, swinging_factorial(n)).
1
1, 1, 1, 1, 1, 4, 4, 36, 18, 64, 576, 14400, 43200, 518400, 518400, 5080320, 12700800, 1625702400, 1625702400, 131681894400, 131681894400, 627056640000, 13168189440000, 1593350922240000
OFFSET
0,6
COMMENTS
A divisibility sequence, i.e., if m|n then a(m)|a(n). Except for n = 9 the prime factors of A181858(n) are the primes <= floor((n-1)/2). Using this fact the divisibility property can be proved. - Peter Luschny, Jan 10 2011
FORMULA
a(n) = A181857(n) / A181860(n).
MAPLE
A181858 := n -> `if`(n=0, 1, ilcm(n^2, n!)/ilcm(n^2, n!/iquo(n, 2)!^2));
MATHEMATICA
a[n_] := If[n == 0, 1, LCM[n^2, n!]/LCM[n^2, n!/Quotient[n, 2]!^2]];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 18 2019 *)
PROG
(PARI) a(n)=lcm(n^2, n!)/lcm(n!/(n\2)!^2, n^2) \\ Charles R Greathouse IV, Feb 01 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 21 2010
STATUS
approved