OFFSET
0,2
COMMENTS
FORMULA
a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
a(4n) = A154615(n).
a(4n+1) = A017090(n).
a(4n+3) = A017138(n).
From Bruno Berselli, May 23 2013: (Start)
G.f.: x*(4 +4*x +36*x^2 +x^3 +100*x^4 +36*x^5 +196*x^6 +16*x^7 +312*x^8 +88*x^9 +376*x^10 +6*x^11 +376*x^12 +88*x^13 +312*x^14 +16*x^15 +196*x^16 +36*x^17 +100*x^18 +x^19 +36*x^20 +4*x^21 +4*x^22)/(1-x^8)^3.
a(n) = n^2*(6*cos(3*Pi*n/4)+6*cos(Pi*n/4)-54*cos(Pi*n/2)-219*(-1)^n+293)/128.
a(n+9) = a(n+1)*((n+9)/(n+1))^2. (End)
Sum_{n>=1} 1/a(n) = 19*Pi^2/96. - Amiram Eldar, Aug 14 2022
EXAMPLE
a(0) = (-1+1)^2 = 0, a(1) = (-3+5)^2 = 4, a(2) = (-1+3)^2 = 4.
MATHEMATICA
Join[{0}, Table[Denominator[1/4 - 4/n^2], {n, 49}]] (* Alonso del Arte, May 22 2013 *)
PROG
(Magma) [0] cat [Denominator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 23 2013
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Paul Curtz, May 22 2013
EXTENSIONS
Edited by Bruno Berselli, May 23 2013
STATUS
approved