Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Aug 14 2022 03:02:15
%S 0,4,4,36,1,100,36,196,16,324,100,484,9,676,196,900,64,1156,324,1444,
%T 25,1764,484,2116,144,2500,676,2916,49,3364,900,3844,256,4356,1156,
%U 4900,81,5476,1444,6084,400,6724,1764,7396,121,8100
%N a(0) = 0; for n>0, a(n) = denominator(1/4 - 4/n^2).
%C Numerators are in A225948.
%C Repeated terms of A016826 are in the positions 1, 2, 3, 6, 5, 10, ... (A043547).
%F a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
%F a(8n) = A016802(n), a(8n+4) = A016754(n).
%F a(4n) = A154615(n).
%F a(4n+1) = A017090(n).
%F a(4n+2) = a(2n+1) = A016826(n); a(2n) = A061038(n).
%F a(4n+3) = A017138(n).
%F From _Bruno Berselli_, May 23 2013: (Start)
%F G.f.: x*(4 +4*x +36*x^2 +x^3 +100*x^4 +36*x^5 +196*x^6 +16*x^7 +312*x^8 +88*x^9 +376*x^10 +6*x^11 +376*x^12 +88*x^13 +312*x^14 +16*x^15 +196*x^16 +36*x^17 +100*x^18 +x^19 +36*x^20 +4*x^21 +4*x^22)/(1-x^8)^3.
%F a(n) = n^2*(6*cos(3*Pi*n/4)+6*cos(Pi*n/4)-54*cos(Pi*n/2)-219*(-1)^n+293)/128.
%F a(n+9) = a(n+1)*((n+9)/(n+1))^2. (End)
%F Sum_{n>=1} 1/a(n) = 19*Pi^2/96. - _Amiram Eldar_, Aug 14 2022
%e a(0) = (-1+1)^2 = 0, a(1) = (-3+5)^2 = 4, a(2) = (-1+3)^2 = 4.
%t Join[{0},Table[Denominator[1/4 - 4/n^2], {n, 49}]] (* _Alonso del Arte_, May 22 2013 *)
%o (Magma) [0] cat [Denominator(1/4-4/n^2): n in [1..50]]; // _Bruno Berselli_, May 23 2013
%Y Cf. A016754, A016802, A016826, A017090, A017138, A154615, A225948 (numerators).
%Y Cf. A225975 (associated square roots).
%K nonn,frac,easy
%O 0,2
%A _Paul Curtz_, May 22 2013
%E Edited by _Bruno Berselli_, May 23 2013