login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226009
McKay-Thompson series of class 33A for the Monster group with a(0) = -1.
3
1, -1, -1, 1, -1, 0, 2, -1, -1, 3, -2, -2, 5, -2, -3, 6, -4, -4, 9, -5, -7, 12, -7, -7, 18, -9, -10, 22, -13, -14, 31, -16, -18, 39, -22, -24, 53, -28, -31, 66, -37, -38, 87, -46, -51, 108, -59, -64, 138, -74, -80, 171, -94, -100, 216, -115, -126, 266, -144
OFFSET
-1,7
LINKS
FORMULA
Expansion of eta(q) * eta(q^11) / (eta(q^3) * eta(q^33)) in powers of q.
Euler transform of period 33 sequence [ -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -2, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -2, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (u*v + 3) - (u+v) * (u^2 - 3 * u*v + v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (33 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128663.
G.f.: 1/x * Product_{k>0} (1 - x^k) * (1 - x^(11*k)) / ((1 - x^(3*k)) * (1 - x^(33*k))).
a(n) = A058636(n) unless n=0. Convolution inverse of A128663.
EXAMPLE
1/q - 1 - q + q^2 - q^3 + 2*q^5 - q^6 - q^7 + 3*q^8 - 2*q^9 - 2*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^11] / (q QPochhammer[ q^3] QPochhammer[ q^33]), {q, 0, n}] (* Michael Somos, Jul 25 2013 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^11 + A) / (eta(x^3 + A) * eta(x^33 + A)), n))}
CROSSREFS
Sequence in context: A094340 A228668 A058636 * A132462 A161039 A104467
KEYWORD
sign
AUTHOR
Michael Somos, May 22 2013
STATUS
approved