login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128663
Expansion of eta(q^3) * eta(q^33) / ( eta(q)* eta(q^11)) in powers of q.
3
1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 28, 37, 46, 59, 74, 94, 115, 144, 176, 218, 265, 326, 393, 479, 574, 695, 830, 996, 1184, 1414, 1673, 1988, 2344, 2770, 3254, 3828, 4482, 5252, 6126, 7153, 8318, 9678, 11222, 13018, 15050, 17405, 20068, 23145, 26621
OFFSET
1,3
LINKS
FORMULA
Euler transform of period 33 sequence [ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (1 + 3 * u*v) - (u+v) * (u^2 - 3 * u*v + v^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = v - u^3 + 3 * u*v * (2*u + (1+v) * (1 + 3*u*v)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (33 t)) = 1/3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226009.
G.f.: x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(33*k)) / ( (1 - x^k) * (1 - x^(11*k))).
Convolution inverse of A226009.
a(n) ~ exp(4*Pi*sqrt(n/33)) / (sqrt(2) * 3^(5/4) * 11^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
q + q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 5*q^6 + 7*q^7 + 9*q^8 + 13*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3] QPochhammer[ q^33] / (QPochhammer[ q] QPochhammer[ q^11]), {q, 0, n}]
nmax = 40; Rest[CoefficientList[Series[x * Product[(1 - x^(3*k)) * (1 - x^(33*k)) / ( (1 - x^k) * (1 - x^(11*k))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^33 + A) / (eta(x + A) * eta(x^11 + A)), n))}
CROSSREFS
Cf. A226009.
Sequence in context: A058661 A094362 A000726 * A206557 A240508 A174068
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 19 2007
STATUS
approved