login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161039
Number of partitions of n into odd numbers where every part appears at least 3 times.
1
0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 5, 3, 3, 6, 5, 6, 8, 6, 7, 11, 10, 9, 14, 13, 13, 19, 16, 18, 25, 22, 25, 32, 29, 31, 42, 41, 41, 53, 51, 54, 69, 64, 69, 88, 83, 89, 109, 105, 112, 136, 134, 141, 170, 166, 177, 215, 207, 219, 262, 260, 276, 320, 320, 341, 397, 397, 417, 485
OFFSET
1,9
LINKS
R. H. Hardin and Vaclav Kotesovec, Table of n, a(n) for n = 1..5000 (first 1000 terms from R. H. Hardin)
FORMULA
G.f.: Product_{j>=1} (1 + x^(6j-3)/(1-x^(2j-1))). - Emeric Deutsch, Jun 26 2009
a(n) ~ (6*c + Pi^2)^(1/4) * exp(sqrt((6*c + Pi^2)*n/3)) / (4*3^(1/4)*sqrt(Pi) * n^(3/4)), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... . - Vaclav Kotesovec, Jan 05 2016
EXAMPLE
a(15)=5 because we have 333, (2^6)(1^3), (2^5)(1^5), (2^4)(1^7), and (2^3)(1^9).
MAPLE
g := product(1+x^(3*(2*j-1))/(1-x^(2*j-1)), j = 1 .. 20): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 1 .. 72); # Emeric Deutsch, Jun 26 2009
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(6*k-3) / (1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 02 2016 *)
CROSSREFS
Cf. A100405.
Sequence in context: A058636 A226009 A132462 * A104467 A132463 A153901
KEYWORD
nonn
AUTHOR
R. H. Hardin Jun 02 2009
EXTENSIONS
Minor edits by Vaclav Kotesovec, Jan 02 2016
STATUS
approved