login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058636
McKay-Thompson series of class 33A for Monster.
2
1, 0, -1, 1, -1, 0, 2, -1, -1, 3, -2, -2, 5, -2, -3, 6, -4, -4, 9, -5, -7, 12, -7, -7, 18, -9, -10, 22, -13, -14, 31, -16, -18, 39, -22, -24, 53, -28, -31, 66, -37, -38, 87, -46, -51, 108, -59, -64, 138, -74, -80, 171, -94, -100, 216, -115, -126, 266, -144
OFFSET
-1,7
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of 1 + eta(q)*eta(q^11)/(eta(q^3)*eta(q^33)), in powers of q. - G. C. Greubel, Jun 19 2018
EXAMPLE
T33A = 1/q - q + q^2 - q^3 + 2*q^5 - q^6 - q^7 + 3*q^8 - 2*q^9 - 2*q^10 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; A := (eta[q]*eta[q^11])/(eta[q^3] *eta[q^33]); a := CoefficientList[Series[1 + A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 19 2018 *)
PROG
(PARI) q='q+O('q^50); A = 1 + eta(q)*eta(q^11)/(eta(q^3)*eta(q^33))/q; Vec(A) \\ G. C. Greubel, Jun 19 2018
CROSSREFS
Cf. A226009 (same sequence except for n=0).
Sequence in context: A110248 A094340 A228668 * A226009 A132462 A161039
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved