login
A225948
a(0) = -1; for n>0, a(n) = numerator(1/4 - 4/n^2).
7
-1, -15, -3, -7, 0, 9, 5, 33, 3, 65, 21, 105, 2, 153, 45, 209, 15, 273, 77, 345, 6, 425, 117, 513, 35, 609, 165, 713, 12, 825, 221, 945, 63, 1073, 285, 1209, 20, 1353, 357, 1505, 99, 1665, 437, 1833, 30, 2009, 525, 2193, 143
OFFSET
0,2
COMMENTS
Denominators are in A226008.
Fractions in lowest terms for n>0: -15/4, -3/4, -7/36, 0/1, 9/100, 5/36, 33/196, 3/16, 65/324, 21/100, 105/484, 2/9, 153/676, 45/196, 209/900, 15/64,...
If t(n) is the sequence with period 8: 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, ... (see A226044), then A226008(n) = 4*a(n) + t(n).
LINKS
FORMULA
a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
a(2n) = A061037(n), a(2n+1) = A145923(n-2) for A145923(-2)=-15, A145923(-1)=-7.
a(4n) = A142705(n) for A142705(0)=-1, a(8n) = A000466(n);
a(4n+1) = A028566(4n-3) for A028566(-3)=-15;
a(4n+2) = A078371(n-1) for A078371(-1)=-3;
a(4n+3) = A028566(4n-1) for A028566(-1)=-7.
a(n+4) = A106609(n) * A106609(n+8).
G.f.: -(1 +15*x +3*x^2 +7*x^3 -9*x^5 -5*x^6 -33*x^7 -6*x^8 -110*x^9 -30*x^10 -126*x^11 -2*x^12 -126*x^13 -30*x^14 -110*x^15 -3*x^16 -33*x^17 -5*x^18 -9*x^19 +7*x^21 +3*x^22 +15*x^23)/(1-x^8)^3. - Bruno Berselli, May 22 2013
a(n) = (n^2-16)*(6*cos(Pi*n/4)-54*cos(Pi*n/2)+6*cos(3*Pi*n/4)-219*(-1)^n+293)/512. - Bruno Berselli, May 22 2013
a(n+10) = a(n+2)*(n+14)/(n-2) for n=0,1 and n>2. - Bruno Berselli, May 22 2013
MATHEMATICA
Join[{-1}, Table[Numerator[1/4 - 4/n^2], {n, 50}]] (* Bruno Berselli, May 24 2013 *)
PROG
(Magma) [-1] cat [Numerator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 22 2013
(PARI) concat([-1], vector(100, n, numerator(1/4 - 4/n^2))) \\ G. C. Greubel, Sep 19 2018
KEYWORD
sign,frac,easy
AUTHOR
Paul Curtz, May 21 2013
EXTENSIONS
Edited by Bruno Berselli, May 22 2013
STATUS
approved