login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = -1; for n>0, a(n) = numerator(1/4 - 4/n^2).
7

%I #80 Sep 08 2022 08:46:05

%S -1,-15,-3,-7,0,9,5,33,3,65,21,105,2,153,45,209,15,273,77,345,6,425,

%T 117,513,35,609,165,713,12,825,221,945,63,1073,285,1209,20,1353,357,

%U 1505,99,1665,437,1833,30,2009,525,2193,143

%N a(0) = -1; for n>0, a(n) = numerator(1/4 - 4/n^2).

%C Denominators are in A226008.

%C Fractions in lowest terms for n>0: -15/4, -3/4, -7/36, 0/1, 9/100, 5/36, 33/196, 3/16, 65/324, 21/100, 105/484, 2/9, 153/676, 45/196, 209/900, 15/64,...

%C If t(n) is the sequence with period 8: 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, ... (see A226044), then A226008(n) = 4*a(n) + t(n).

%H G. C. Greubel, <a href="/A225948/b225948.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).

%F a(2n) = A061037(n), a(2n+1) = A145923(n-2) for A145923(-2)=-15, A145923(-1)=-7.

%F a(4n) = A142705(n) for A142705(0)=-1, a(8n) = A000466(n);

%F a(4n+1) = A028566(4n-3) for A028566(-3)=-15;

%F a(4n+2) = A078371(n-1) for A078371(-1)=-3;

%F a(4n+3) = A028566(4n-1) for A028566(-1)=-7.

%F a(n+4) = A106609(n) * A106609(n+8).

%F G.f.: -(1 +15*x +3*x^2 +7*x^3 -9*x^5 -5*x^6 -33*x^7 -6*x^8 -110*x^9 -30*x^10 -126*x^11 -2*x^12 -126*x^13 -30*x^14 -110*x^15 -3*x^16 -33*x^17 -5*x^18 -9*x^19 +7*x^21 +3*x^22 +15*x^23)/(1-x^8)^3. - _Bruno Berselli_, May 22 2013

%F a(n) = (n^2-16)*(6*cos(Pi*n/4)-54*cos(Pi*n/2)+6*cos(3*Pi*n/4)-219*(-1)^n+293)/512. - _Bruno Berselli_, May 22 2013

%F a(n+10) = a(n+2)*(n+14)/(n-2) for n=0,1 and n>2. - _Bruno Berselli_, May 22 2013

%t Join[{-1}, Table[Numerator[1/4 - 4/n^2], {n, 50}]] (* _Bruno Berselli_, May 24 2013 *)

%o (Magma) [-1] cat [Numerator(1/4-4/n^2): n in [1..50]]; // _Bruno Berselli_, May 22 2013

%o (PARI) concat([-1], vector(100, n, numerator(1/4 - 4/n^2))) \\ _G. C. Greubel_, Sep 19 2018

%Y Cf. A000466, A028566, A061037, A061041, A078371, A106609, A142705, A145923, A226008.

%K sign,frac,easy

%O 0,2

%A _Paul Curtz_, May 21 2013

%E Edited by _Bruno Berselli_, May 22 2013