login
A226044
Period of length 8: 1, 64, 16, 64, 4, 64, 16, 64.
2
1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64
OFFSET
0,2
COMMENTS
A002378(n)/A016754(n) gives 0/1, 2/9, 6/25, 12/49, 20/81, 30/121, 42/169, 56/225,..., where A016754(n) = 4*A002378(n) + 1;
A142705(n)/A154615(n+1) gives 0/1, 3/16, 2/9, 15/64, 6/25, 35/144, 12/49, 63/256,..., where A142705(n) = 4*A154615(n+1) + A010685(n);
A061037(n)/A061038(n) gives 0/1, 5/36, 3/16, 21/100, 2/9, 45/196, 15/64, 77/324,..., where A061038(n) = 4*A061037(n) + A177499(n);
A225948(n)/A226008(n) gives 0/1, 9/100, 5/36, 33/196, 3/16, 65/324, 21/100, 105/484,..., where A226008(n) = 4*A225948(n) + a(n).
See also the triangle in Example lines.
FORMULA
a(n) = A205383(n+7)^2.
G.f.: (1+64*x+16*x^2+64*x^3+4*x^4+64*x^5+16*x^6+64*x^7)/((1-x)*(1+x)*(1+x^2)*(1+x^4)). [Bruno Berselli, May 25 2013]
EXAMPLE
Triangle in which the terms of each line are repeated:
A000012: 1, ...
A010685: 1, 4, ...
A177499: 1, 16, 4, 16, ...
A226044: 1, 64, 16, 64, 4, 64, 16, 64, ...
1, 256, 64, 256, 16, 256, 64, 256, 4, 256, 64, 256, 16, 256, 64, 256, ...
MATHEMATICA
Table[{1, 64, 16, 64, 4, 64, 16, 64}, {7}] // Flatten (* Jean-François Alcover, May 24 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 24 2013
STATUS
approved