|
|
A226047
|
|
Largest prime power dividing binomial(2n, n).
|
|
4
|
|
|
2, 3, 5, 7, 9, 11, 13, 13, 17, 19, 19, 23, 25, 27, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 49, 49, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 81, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The first indices n for which a(n) < a(n-1) are 123, 315, 366, 671, 1095, 1098, 1204, 1565, 6095, 7326, 9843, 39065, 58828, 88575, 88578, 195315, 195320, 265722, 265725 and 709937. - Giovanni Resta, May 24 2013
|
|
LINKS
|
|
|
FORMULA
|
Erdős proved that a(n) <= 2n.
|
|
EXAMPLE
|
Binomial(10, 5) = 2^2 * 3^2 * 7 and so a(5) = max({2^2, 3^2, 7}) = 3^2.
|
|
MAPLE
|
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
a:= proc(n) local p;
p:= add(f(n+i) -f(i), i=1..n);
max(seq(i^coeff(p, x, i), i=1..degree(p)))
end:
|
|
MATHEMATICA
|
cnt[n_, p_] := (n - Total@IntegerDigits[n, p])/(p-1); a[n_] := Block[{k = 2*n, p, e}, While[! PrimePowerQ[k] || ({p, e} = FactorInteger[k][[1]]; cnt[2*n , p] - 2 cnt[n, p] != e), k--]; k]; Array[a, 60] (* Giovanni Resta, May 24 2013 *)
|
|
PROG
|
(PARI) ord(n, p)=my(s); while(n\=p, s+=n); s
a(n)=my(p=precprime(2*n)); forstep(k=2*n, p+1, -1, my(q, e=isprimepower(k, &q)); if(e && e == ord(2*n, q)-2*ord(n, q), return(k))); p /* requires PARI v.2.5 or later */
(PARI) A226047(n)={for(k=2, #n=factor(binomial(2*n, n))~, factorback(n[, k-1]~)>factorback(n[, k]~) && n[, k]=n[, k-1]); factorback(n[, #n]~)} \\ highly unoptimized, not suitable for n>>10^4. - M. F. Hasler, May 24 2013
(Haskell)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|