OFFSET
1,1
COMMENTS
a(n) is the smallest k such that C(2n,n) divides k!. - Benoit Cloitre, May 30 2002
a(n) is largest prime factor of C(2n,n) = (2n)!/(n!)^2. - Alexander Adamchuk, Jul 11 2006
a(n) is also the largest prime in the interval [n,2n]. - Peter Luschny, Mar 04 2011
Odd prime p repeats (q-p)/2 times, where q > p is the next prime. In particular, every lesser of twin primes (A001359) occurs 1 time, every lesser more than 3 of cousin primes (A023200) occurs 2 times, etc. - Vladimir Shevelev, Mar 12 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Max[FactorInteger[(2n)!/(n!)^2]]. - Alexander Adamchuk, Jul 11 2006
a(n) ~ 2*n as n tends to infinity. - Vladimir Shevelev, Mar 12 2012
EXAMPLE
n=1, 2n=2, p(1) = 2 = a(1) is the largest prime not exceeding 2.
MAPLE
seq (prevprime(2*i+1), i=1..256);
seq(max(op(select(isprime, [$n..2*n]))), n=1..66); # Peter Luschny, Mar 04 2011
MATHEMATICA
Table[Max[FactorInteger[(2n)!/(n!)^2]], {n, 1, 100}] (* Alexander Adamchuk, Jul 11 2006 *)
NextPrime[2*Range[80]+1, -1] (* Harvey P. Dale, Apr 23 2017 *)
PROG
(PARI) a(n)=precprime(2*n) \\ Charles R Greathouse IV, May 24 2013
(Haskell)
a060308 = a007917 . a005843 -- Reinhard Zumkeller, May 25 2013
(Magma) [NthPrime(#PrimesUpTo(2*n)): n in [2..100]]; // Vincenzo Librandi, Nov 25 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Mar 27 2001
EXTENSIONS
More terms from Alexander Adamchuk, Jul 11 2006
STATUS
approved