login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060307
Number of degree-4n permutations without odd cycles and such that number of cycles of size 2k is even (or zero) for every k.
5
1, 3, 1365, 8534295, 204893714025, 15735481638151275, 2760485970394430603325, 1006427270776555103089989375, 659316841888260316767029819420625, 740198799422691022278446846884066321875, 1306298536067264588818106780684613899555353125
OFFSET
0,2
LINKS
FORMULA
E.g.f.: Product_{k >= 1} cosh x^(2k)/(2k).
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=0 and irem(j, 2)=0, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(4*n$2):
seq(a(n), n=0..15); # Alois P. Heinz, Mar 09 2015
MATHEMATICA
nn = 40; Select[Range[0, nn]! CoefficientList[Series[Product[Cosh[x^(2 i)/(2 i)], {i, 1, nn}], {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Jan 16 2012 *)
CROSSREFS
Cf. A003483.
Cf. A013302.
Sequence in context: A122389 A036066 A262516 * A119111 A233195 A219783
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 28 2001, Aug 10 2007
STATUS
approved