login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036066
The summarize Lucas sequence: summarize the previous two terms, start with 1, 3.
4
1, 3, 1311, 2331, 331241, 14432231, 34433241, 54533231, 2544632221, 163534435221, 263544436231, 363554634231, 463554733221, 17364544733221, 37263554634231, 37363554734231, 37364544933221, 1937263554933221, 3927263544835231, 391827264534836231, 293827363544836231
OFFSET
0,2
COMMENTS
After the 26th term the sequence goes into a cycle of 46 terms.
"Summarize" uses here method C = A244112: in order of decreasing digit value.
FORMULA
a(n+1) = A244112(concat(a(n),a(n-1))). - M. F. Hasler, Feb 25 2018
MAPLE
a:= proc(n) option remember; `if`(n<2, 2*n+1, (p-> parse(cat(seq((c->
`if`(c=0, [][], [c, 9-i][]))(coeff(p, x, 9-i)), i=0..9))))(
add(x^i, i=map(x-> convert(x, base, 10)[], [a(n-1), a(n-2)]))))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 18 2022
MATHEMATICA
a[0] = 1; a[1] = 3; a[n_] := a[n] = FromDigits @ Flatten @ Reverse @ Select[ Transpose @ { DigitCount[a[n-1]] + DigitCount[a[n-2]], Append[ Range[9], 0]}, #[[1]] > 0 &];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2017 *)
PROG
(PARI) {a=[1, 3]; for(n=1, 50, a=concat(a, A244112(eval(Str(a[n], a[n+1]))))); a} \\ M. F. Hasler, Feb 25 2018
CROSSREFS
Cf. A036059.
Cf. A244112 (summarizing as used here: by decreasing digit value), A047842 (alternative summarizing method: by increasing digit value), A047843 (another method: don't omit missing digits between smallest and largest one).
Sequence in context: A129078 A174826 A122389 * A262516 A060307 A119111
KEYWORD
base,easy,nice,nonn
STATUS
approved