login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036059
The summarize Fibonacci sequence: summarize the previous two terms!.
18
1, 1, 21, 1221, 3231, 233231, 533221, 15534221, 3514334231, 3534533241, 3544832231, 183544733221, 28172544634231, 2827162554535241, 2827265554337241, 2837267544338231, 3847264544637221, 3847362564636221, 2837662564536221, 2827863534537221, 3837564524538221
OFFSET
0,3
COMMENTS
After the 23rd term the sequence goes into a cycle of 16 terms.
EXAMPLE
a(20) = 3837564524538221;
a(21) = 4837265534637221;
a(22+16*k) = 3837365544636221, k >= 0;
a(36) = a(20+16) = 3837265554834221 <> a(20);
a(37) = a(21+16) = 3837266544735221 <> a(21);
a(38) = a(22+16) = 3837365544636221 = a(22). - Reinhard Zumkeller, Aug 10 2014
MAPLE
a:= proc(n) option remember; `if`(n<2, 1, (p-> parse(cat(seq((c->
`if`(c=0, [][], [c, 9-i][]))(coeff(p, x, 9-i)), i=0..9))))(
add(x^i, i=map(x-> convert(x, base, 10)[], [a(n-1), a(n-2)]))))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 18 2022
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = FromDigits @ Flatten @ Reverse @ Select[ Transpose @ { DigitCount[a[n-1]] + DigitCount[a[n-2]], Append[ Range[9], 0]}, #[[1]] > 0&];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 30 2017 *)
PROG
(Haskell)
import Data.List (sort, group)
a036059 n = a036059_list !! n
a036059_list = map (read . concatMap show) fss :: [Integer] where
fss = [1] : [1] : zipWith h (tail fss) fss where
h vs ws = concatMap (\us -> [length us, head us]) $
group $ reverse $ sort $ vs ++ ws
-- Reinhard Zumkeller, Aug 10 2014
(Python)
def aupton(nn):
alst = [1, 1]
for n in range(2, nn+1):
prev2, anstr = sorted(str(alst[-2]) + str(alst[-1])), ""
for d in sorted(set(prev2), reverse=True):
anstr += str(prev2.count(d)) + d
alst.append(int(anstr))
return alst
print(aupton(20)) # Michael S. Branicky, Feb 02 2021
CROSSREFS
Sequence in context: A086875 A012211 A297071 * A036519 A219408 A250061
KEYWORD
nonn,base,nice,easy
STATUS
approved