login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The summarize Fibonacci sequence: summarize the previous two terms!.
18

%I #19 Jun 18 2022 13:24:01

%S 1,1,21,1221,3231,233231,533221,15534221,3514334231,3534533241,

%T 3544832231,183544733221,28172544634231,2827162554535241,

%U 2827265554337241,2837267544338231,3847264544637221,3847362564636221,2837662564536221,2827863534537221,3837564524538221

%N The summarize Fibonacci sequence: summarize the previous two terms!.

%C After the 23rd term the sequence goes into a cycle of 16 terms.

%H Reinhard Zumkeller, <a href="/A036059/b036059.txt">Table of n, a(n) for n = 0..181</a>, 10 periods.

%H <a href="/index/Sa#swys">Index to sequences related to say what you see</a>

%e a(20) = 3837564524538221;

%e a(21) = 4837265534637221;

%e a(22+16*k) = 3837365544636221, k >= 0;

%e a(36) = a(20+16) = 3837265554834221 <> a(20);

%e a(37) = a(21+16) = 3837266544735221 <> a(21);

%e a(38) = a(22+16) = 3837365544636221 = a(22). - _Reinhard Zumkeller_, Aug 10 2014

%p a:= proc(n) option remember; `if`(n<2, 1, (p-> parse(cat(seq((c->

%p `if`(c=0, [][], [c, 9-i][]))(coeff(p, x, 9-i)), i=0..9))))(

%p add(x^i, i=map(x-> convert(x, base, 10)[], [a(n-1),a(n-2)]))))

%p end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jun 18 2022

%t a[0] = a[1] = 1; a[n_] := a[n] = FromDigits @ Flatten @ Reverse @ Select[ Transpose @ { DigitCount[a[n-1]] + DigitCount[a[n-2]], Append[ Range[9], 0]}, #[[1]] > 0&];

%t Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Dec 30 2017 *)

%o (Haskell)

%o import Data.List (sort, group)

%o a036059 n = a036059_list !! n

%o a036059_list = map (read . concatMap show) fss :: [Integer] where

%o fss = [1] : [1] : zipWith h (tail fss) fss where

%o h vs ws = concatMap (\us -> [length us, head us]) $

%o group $ reverse $ sort $ vs ++ ws

%o -- _Reinhard Zumkeller_, Aug 10 2014

%o (Python)

%o def aupton(nn):

%o alst = [1, 1]

%o for n in range(2, nn+1):

%o prev2, anstr = sorted(str(alst[-2]) + str(alst[-1])), ""

%o for d in sorted(set(prev2), reverse=True):

%o anstr += str(prev2.count(d)) + d

%o alst.append(int(anstr))

%o return alst

%o print(aupton(20)) # _Michael S. Branicky_, Feb 02 2021

%Y Cf. A036058, A036066.

%K nonn,base,nice,easy

%O 0,3

%A _Floor van Lamoen_