login
A036069
Denominator of rational part of Haar measure on Grassmannian space G(n,1).
4
1, 2, 1, 4, 3, 16, 5, 32, 35, 256, 63, 512, 231, 2048, 429, 4096, 6435, 65536, 12155, 131072, 46189, 524288, 88179, 1048576, 676039, 8388608, 1300075, 16777216, 5014575, 67108864, 9694845, 134217728, 300540195
OFFSET
0,2
COMMENTS
Also rational part of denominator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A004731).
REFERENCES
D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
LINKS
EXAMPLE
1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
MAPLE
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1, k)/4^k else k := (n-1)/2; 4^k/binomial(2*k, k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
MATHEMATICA
Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)
CROSSREFS
Cf. A004731.
Bisections are A001790 and A101926.
Sequence in context: A260319 A146001 A091879 * A338846 A009477 A324658
KEYWORD
nonn,easy,nice,frac
STATUS
approved