OFFSET
0,2
COMMENTS
Also rational part of denominator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A004731).
REFERENCES
D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
EXAMPLE
1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
MAPLE
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1, k)/4^k else k := (n-1)/2; 4^k/binomial(2*k, k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
MATHEMATICA
Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)
CROSSREFS
KEYWORD
nonn,easy,nice,frac
AUTHOR
STATUS
approved