login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046161 a(n) = denominator of binomial(2n,n)/4^n. 85
1, 2, 8, 16, 128, 256, 1024, 2048, 32768, 65536, 262144, 524288, 4194304, 8388608, 33554432, 67108864, 2147483648, 4294967296, 17179869184, 34359738368, 274877906944, 549755813888, 2199023255552, 4398046511104, 70368744177664 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also denominator of e(0,n) (see Maple line). - N. J. A. Sloane, Feb 16 2002

Denominator of coefficient of x^n in (1+x)^(k/2) or (1-x)^(k/2) for any odd integer k. - Michael Somos, Sep 15 2004

Numerator of binomial(2n,n)/4^n = A001790(n).

Denominators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005

Denominator of 2^m*GAMMA(m+3/4)/(GAMMA(3/4)*GAMMA(m+1)). - Stephen Crowley, Mar 19 2007

Denominator in expansion of Jacobi_P(n,1/2,1/2,x). - Paul Barry, Feb 13 2008

This sequence equals the denominators of the coefficients of the series expansions of (1-x)^((-1-2*n)/2) for all integer values of n; see A161198 for detailed information. - Johannes W. Meijer, Jun 08 2009

Numerators of binomial transform of 1, -1/3, 1/5, -1/7, 1/9, ... (Madhava-Gregory-Leibniz series for Pi/4): 1, 2/3, 8/15, 16/35, 128/315, 256/693, .... First differences are -1/3, -2/15, -8/105, -16/315, -128/3465, -256/9009, ... which contain the same numerators, negated. The second differences are 1/5, 2/35, 8/315, 16/1155, 128/15015, ... again with the same numerators. Second column: 2/3, -2/15, 2/35, -2/63, 2/99; see A000466(n+1) = A005563(2n+1). Third column: 8*(1/15, -1/105, 1/315, -1/693, ), see A061550. See A173294 and A173296. - Paul Curtz, Feb 16 2010

0, 1, 5/3, 11/5, 93/35, 193/63, 793/231, ... = (0 followed by A120778(n))/A001790(n) is the binomial transform of 0, 1, -1/3, 1/5, -1/7, 1/9, ... . See A173755 and formula below. - Paul Curtz, Mar 13 2013

Numerator of power series of arcsin(x)/sqrt(1-x^2), centered at x=0. - John Molokach, Aug 02 2013

Denominators of coefficients in the Taylor series expansion of  Sum_{n>=0} exp((-1)^n * euler(2*n)*x^n/(2*n)), see A280442 for the numerators. - Johannes W. Meijer, Jan 05 2017

REFERENCES

B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).

Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994), p. 72.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993. See V_n with N=1.

V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.

Eric Weisstein's World of Mathematics, Heads-Minus-Tails Distribution

Eric Weisstein's World of Mathematics, Random Walk 1-Dimensional

Eric Weisstein's World of Mathematics, Legendre Polynomial

Eric Weisstein's World of Mathematics, Binomial Series

Eric Weisstein's World of Mathematics, Random Matrix

Index to divisibility sequences

FORMULA

a(n) = 2^(2n - 1 - A048881(n-1)), if n > 0.

a(n) = 2^A005187(n).

a(n) = 4^n/2^A000120(n). - Michael Somos, Sep 15 2004

a(n) = 2^A001511(n)*a(n-1) with a(0) = 1. - Johannes W. Meijer, Nov 04 2012

a(n) = denominator(binomial(-1/2,n)). - Peter Luschny, Nov 21 2012

a(n) = (0 followed by A120778(n)) + A001790(n). - Paul Curtz, Mar 13 2013

a(n) = 2^n*A060818(n). - Johannes W. Meijer, Jan 05 2017

EXAMPLE

sqrt(1+x) = 1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 - 21/1024*x^6 + 33/2048*x^7 + ...

binomial(2n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...

The sequence e(0,n) begins 1, 3/2, 21/8, 77/16, 1155/128, 4389/256, 33649/1024, 129789/2048, 4023459/32768 ...

MAPLE

e := proc(l, m) local k; add(2^(k-2*m)*binomial(2*m-2*k, m-k)* binomial(m+k, m) *binomial(k, l), k=l..m); end: seq(denom(e(0, n)), n = 0..24);

Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n)), n=-1..23); # Zerinvary Lajos, May 21 2008

A046161 := proc(n) option remember: if n = 0 then 1 else 2^A001511(n) * procname(n-1) fi: end: A001511 := proc(n): padic[ordp](2*n, 2) end: seq(A046161(n), n = 0..24); # Johannes W. Meijer, Nov 04 2012

A046161 := n -> 4^n/2^add(i, i=convert(n, base, 2)):

seq(A046161(n), n=0..24); # Peter Luschny, Apr 08 2014

MATHEMATICA

a[n_, m_] := Binomial[n - m/2 + 1, n - m + 1] - Binomial[n - m/2, n - m + 1]; s[n_] := Sum[ a[n, k], {k, 0, n}]; Table [Denominator[s[n]], {n, 0, 26}] (* Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002 *)

Denominator[Table[Binomial[2n, n]/4^n, {n, 0, 30}]] (* Harvey P. Dale, Oct 29 2012 *)

PROG

(PARI) a(n)=if(n<0, 0, denominator(binomial(2*n, n)/4^n)) /* Michael Somos, Sep 15 2004 */

(PARI) a(n)=my(s=n); while(n>>=1, s+=n); 2^s \\ Charles R Greathouse IV, Apr 07 2012

(PARI) a(n)=denominator(I^-n*pollegendre(n, I/2)) \\ Charles R Greathouse IV, Mar 18 2017

(Sage)

def A046161(n):

    A005187 = lambda n: A005187(n//2) + n if n > 0 else 0

    return 2^A005187(n)

[A046161(n) for n in (0..24)]  # Peter Luschny, Nov 16 2012

(Maxima)

a(n) := denom(binomial(-1/2, n));

makelist(a(n), n, 0, 24); /* Peter Luschny, Nov 21 2012 */

(MAGMA) [Denominator(Binomial(2*n, n)/4^n): n in [0..30]]; // Vincenzo Librandi, Jul 18 2015

CROSSREFS

Cf. A001790, A001803, A002596, A005187, A072287, A067002.

Cf. A161198 triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n.

Sequence in context: A099888 A249308 A199043 * A092978 A280777 A013516

Adjacent sequences:  A046158 A046159 A046160 * A046162 A046163 A046164

KEYWORD

nonn,easy,nice,frac

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 06:05 EST 2017. Contains 295937 sequences.