The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046163 Reduced denominators of (n-1)^2/(n^2 + n + 1). 6
 1, 7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Arises in Routh's theorem. LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Eric Weisstein's World of Mathematics, Routh's Theorem. Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1). FORMULA G.f.: x*(1 + 7*x + 13*x^2 + 4*x^3 + 10*x^4 + 4*x^5 + x^6 + x^7 + x^8)/(1 - x^3)^3. From Amiram Eldar, Aug 11 2022: (Start) a(n) = numerator((n^2 + n + 1)/3). Sum_{n>=1} 1/a(n) = (2*tanh(Pi/(2*sqrt(3))) + 3*tanh(sqrt(3)*Pi/2))*Pi/(3*sqrt(3)) - 1. (End) MATHEMATICA a[n_] := Denominator[(n - 1)^2/(n^2 + n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 11 2022 *) PROG (Magma) [Denominator((n-1)^2/(n^2+n+1)): n in [1..70]]; // G. C. Greubel, Oct 27 2022 (SageMath) [denominator((n-1)^2/(n^2+n+1)) for n in range(1, 71)] # G. C. Greubel, Oct 27 2022 CROSSREFS Cf. A046162 (numerators). Sequence in context: A164929 A357127 A081257 * A130770 A158622 A367866 Adjacent sequences: A046160 A046161 A046162 * A046164 A046165 A046166 KEYWORD nonn,easy AUTHOR Eric W. Weisstein STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 14 13:09 EDT 2024. Contains 374318 sequences. (Running on oeis4.)