login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081257
a(n) is the greatest prime factor of (n^3 - 1).
8
7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 17, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 29, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
OFFSET
2,1
COMMENTS
The record values here (as well as those for A081256) appear to match the terms of A002383 for n > 1. - Bill McEachen, Jun 19 2023
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 2..10000 (first 999 terms from R. J. Mathar).
FORMULA
a(n) = A006530(A068601(n)). - Michel Marcus, Jun 19 2023
EXAMPLE
a(7)=19 because 7^3 - 1 = 342 = 2*3*3*19.
MAPLE
A081257 := proc(n)
A006530( n^3-1) ;
end proc: # R. J. Mathar, Jul 18 2015
MATHEMATICA
FactorInteger[#][[-1, 1]]&/@(Range[2, 60]^3-1) (* Harvey P. Dale, Oct 09 2017 *)
PROG
(PARI) a(n)=my(f=factor(n^3-1)); f[#f~, 1] \\ Charles R Greathouse IV, Mar 08 2017
(Python)
from sympy import primefactors
def A081257(n): return max(primefactors(n-1)+primefactors(n*(n+1)+1)) # Chai Wah Wu, Oct 15 2022
CROSSREFS
Cf. A096175 (n^3-1 is an odd semiprime), A096176 ((n^3-1)/(n-1) is prime).
Sequence in context: A157517 A164929 A357127 * A046163 A130770 A158622
KEYWORD
easy,nonn
AUTHOR
Jan Fricke, Mar 14 2003
EXTENSIONS
More terms from Hugo Pfoertner, Jun 21 2004
STATUS
approved