login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157517
a(n) = 7 + 12*n - 6*n^2.
1
7, 13, 7, -11, -41, -83, -137, -203, -281, -371, -473, -587, -713, -851, -1001, -1163, -1337, -1523, -1721, -1931, -2153, -2387, -2633, -2891, -3161, -3443, -3737, -4043, -4361, -4691, -5033, -5387, -5753, -6131, -6521, -6923, -7337, -7763, -8201, -8651
OFFSET
0,1
COMMENTS
From John Couch Adams multisteps integration of differential equations, 1855.
REFERENCES
P. Curtz Integration numerique des systemes differentiels, C.C.S.A., Arcueil, 1969, p. 36.
FORMULA
a(n) = 12*n + 6 - A140811(n) = A017593(n) - A140811(n).
Recurrences: a(n) = 2*a(n-1) - a(n-2) - 12 = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n+1) - a(n) = -A017593(n-1), n > 0. Second differences are all -12.
a(n+2) - a(n) = -A008606(n).
G.f.: (-7 + 8*x + 11*x^2)/(x-1)^3. - R. J. Mathar, Mar 15 2009
PROG
(Magma) [7+12*n-6*n^2: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
(PARI) a(n)=7+12*n-6*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A134039 A125741 A103705 * A164929 A357127 A081257
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Mar 02 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Mar 15 2009
STATUS
approved