login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157516
a(n) = 5000*n^2 - 200*n + 1.
3
4801, 19601, 44401, 79201, 124001, 178801, 243601, 318401, 403201, 498001, 602801, 717601, 842401, 977201, 1122001, 1276801, 1441601, 1616401, 1801201, 1996001, 2200801, 2415601, 2640401, 2875201, 3120001, 3374801, 3639601
OFFSET
1,1
COMMENTS
The identity (5000*n^2 - 200*n + 1)^2 - (25*n^2 - n)*(1000*n - 20)^2 = 1 can be written as a(n)^2 - A157514(n)*A157515(n)^2 = 1 (see also the second part of the comment at A157514). - Vincenzo Librandi, Jan 26 2012
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 26 2012
G.f.: x*(-4801 - 5198*x - x^2)/(x-1)^3. - Vincenzo Librandi, Jan 26 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {4801, 19601, 44401}, 50] (* Vincenzo Librandi, Jan 26 2012 *)
PROG
(Magma) I:=[4801, 19601, 44401]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012
(PARI) for(n=1, 22, print1(5000*n^2 - 200*n + 1", ")); \\ Vincenzo Librandi, Jan 26 2012
CROSSREFS
Sequence in context: A255412 A254791 A096790 * A157628 A214146 A085322
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 02 2009
STATUS
approved