login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157516 a(n) = 5000*n^2 - 200*n + 1. 3
4801, 19601, 44401, 79201, 124001, 178801, 243601, 318401, 403201, 498001, 602801, 717601, 842401, 977201, 1122001, 1276801, 1441601, 1616401, 1801201, 1996001, 2200801, 2415601, 2640401, 2875201, 3120001, 3374801, 3639601 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (5000*n^2 - 200*n + 1)^2 - (25*n^2 - n)*(1000*n - 20)^2 = 1 can be written as a(n)^2 - A157514(n)*A157515(n)^2 = 1 (see also the second part of the comment at A157514). - Vincenzo Librandi, Jan 26 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 26 2012

G.f.: x*(-4801 - 5198*x - x^2)/(x-1)^3. - Vincenzo Librandi, Jan 26 2012

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {4801, 19601, 44401}, 50] (* Vincenzo Librandi, Jan 26 2012 *)

PROG

(MAGMA) I:=[4801, 19601, 44401]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012

(PARI) for(n=1, 22, print1(5000*n^2 - 200*n + 1", ")); \\ Vincenzo Librandi, Jan 26 2012

CROSSREFS

Cf. A157514, A157515.

Sequence in context: A255412 A254791 A096790 * A157628 A214146 A085322

Adjacent sequences:  A157513 A157514 A157515 * A157517 A157518 A157519

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:22 EST 2021. Contains 349567 sequences. (Running on oeis4.)