login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157514 a(n) = 25*n^2 - n. 3
24, 98, 222, 396, 620, 894, 1218, 1592, 2016, 2490, 3014, 3588, 4212, 4886, 5610, 6384, 7208, 8082, 9006, 9980, 11004, 12078, 13202, 14376, 15600, 16874, 18198, 19572, 20996, 22470, 23994, 25568, 27192, 28866, 30590, 32364, 34188, 36062 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (5000*n^2 - 200*n + 1)^2 - (25*n^2 - n)*(1000*n - 20)^2 = 1 can be written as A157516(n)^2 - a(n)*A157515(n)^2 = 1. This is the case s=5 of the identity (8*n^2*s^4 - 8*n*s^2 + 1)^2 - (n^2*s^2 - n)*(8*n*s^3 - 4*s)^2 = 1. - Vincenzo Librandi, Jan 26 2012

The continued fraction expansion of sqrt(a(n)) is [5n-1; {1, 8, 1, 10n-2}]. For n=1, this collapses to [4; {1, 8}]. - Magus K. Chu, Sep 21 2022

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 26 2012

G.f.: x*(-24 - 26*x)/(x-1)^3. - Vincenzo Librandi, Jan 26 2012

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {24, 98, 222}, 50] (* Vincenzo Librandi, Jan 26 2012 *)

PROG

(Magma) I:=[24, 98, 222]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012

(PARI) for(n=1, 22, print1(25*n^2 - n", ")); \\ Vincenzo Librandi, Jan 26 2012

CROSSREFS

Cf. A157515, A157516.

Sequence in context: A042122 A042124 A042126 * A100152 A233405 A297798

Adjacent sequences: A157511 A157512 A157513 * A157515 A157516 A157517

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 23:46 EST 2022. Contains 358544 sequences. (Running on oeis4.)