login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157511
a(n) = 5000*n^2 + 200*n + 1.
3
5201, 20401, 45601, 80801, 126001, 181201, 246401, 321601, 406801, 502001, 607201, 722401, 847601, 982801, 1128001, 1283201, 1448401, 1623601, 1808801, 2004001, 2209201, 2424401, 2649601, 2884801, 3130001, 3385201, 3650401
OFFSET
1,1
COMMENTS
The identity (5000*n^2 + 200*n + 1)^2 - (25*n^2 + n)*(1000*n + 20)^2 = 1 can be written as a(n)^2 - A173089(n)*A157510(n)^2 = 1 (see also second part of the comment at A173089). - Vincenzo Librandi, Feb 04 2012
FORMULA
From Harvey P. Dale, May 24 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=5201, a(2)=20401, a(3)=45601.
G.f.: -x*((5201 + x*(4798+x))/(x-1)^3). (End)
MATHEMATICA
Table[5000n^2+200n+1, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {5201, 20401, 45601}, 40] (* Harvey P. Dale, May 24 2011 *)
PROG
(Magma) I:=[5201, 20401, 45601]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 04 2012
(PARI) for(n=1, 40, print1(5000*n^2 + 200*n + 1", ")); \\ Vincenzo Librandi, Feb 04 2012
CROSSREFS
Sequence in context: A262909 A093071 A247266 * A165599 A109159 A231113
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 02 2009
STATUS
approved