login
A085322
Terms m of A003337 such that m+1 is also in A003337. I.e., smaller one of two consecutive numbers, both equal to a sum of three 4th powers.
0
4802, 7202, 10257, 14802, 15522, 38577, 45602, 57122, 57202, 76832, 86002, 90337, 94817, 109777, 112162, 116177, 131697, 135712, 136897, 155617, 163697, 171137, 188577, 243777, 260642, 284562, 296882, 332417, 388962
OFFSET
1,1
EXAMPLE
Distance of closest neighbors in A003337 equals 1; 7202 = 6561 + 625 + 16 and 7203 = 2401 + 2401 + 2401 are corresponding neighbors, so 7202 is listed here.
MATHEMATICA
{m=25, k=4, m^k} t=Union[Flatten[Table[Table[Table[w^k+q^k+t^k, {w, 1, m}], {q, 1, m}], {t, 1, m}]]] dt=Delete[ -RotateRight[t]+t, 1]; Part[t, Flatten[Position[dt, 1]]]
Select[Partition[Union[Total/@Tuples[Range[25]^4, 3]], 2, 1], #[[2]]-#[[1]] == 1&][[All, 1]] (* Harvey P. Dale, Jul 31 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 01 2003
STATUS
approved